Amundson R (2001) The carbon budget in soils. Annu Rev Earth Planet Sci 29:535–562. https://doi.org/10.1146/annurev.earth.29.1.535
CAS
CrossRef
Google Scholar
Andersson S, Nilsson SI (2001) Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus. Soil Biol Biochem 33(9):1181–1191. https://doi.org/10.1016/s0038-0717(01)00022-0
CAS
CrossRef
Google Scholar
Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann Forest Sci 59(3):233–253. https://doi.org/10.1051/forest:2002020
CrossRef
Google Scholar
Baath E, Arnebrant K (1994) Growth-rate and response of bacterial communities to pH in limed and ash treated forest soils. Soil Biol Biochem 26(8):995–1001. https://doi.org/10.1016/0038-0717(94)90114-7
CrossRef
Google Scholar
Baisden WT, Amundson R, Brenner DL, Cook AC, Kendall C, Harden JW (2002) A multiisotope C and N modeling analysis of soil organic matter turnover and transport as a function of soil depth in a California annual grassland soil chronosequence. Glob Biogeochem Cycles 16(4):82/01–82/26. https://doi.org/10.1029/2001gb001823
CrossRef
Google Scholar
Barnett AG, van der Pols JC, Dobson AJ (2005) Regression to the mean: what it is and how to deal with it. Int J Epidemiol 34(1):215–220. https://doi.org/10.1093/ije/dyh299
CrossRef
PubMed
Google Scholar
Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978-2003. Nature 437(7056):245–248. https://doi.org/10.1038/nature04038
CAS
CrossRef
PubMed
Google Scholar
Binkley D, Valentine D (1991) 50-year biogeochemical effects of green ash, white-pine, and Norway spruce in a replicated experiment. Forest Ecol Manag 40(1–2):13–25. https://doi.org/10.1016/0378-1127(91)90088-d
CrossRef
Google Scholar
Böttcher J, Springob G (2001) A carbon balance model for organic layers of acid forest soils. J Plant Nutr Soil Sci Zeitschrift für Pflanzenernährung und Bodenkunde 164(4):399–405. https://doi.org/10.1002/1522-2624(200108)164:4<399::aid-jpln399>3.0.co;2-6
CrossRef
Google Scholar
Bowden RD, Davidson E, Savage K, Arabia C, Steudler P (2004) Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecol Manag 196(1):43–56. https://doi.org/10.1016/j.foreco.2004.03.011
CrossRef
Google Scholar
Burton AJ, Pregitzer KS, Crawford JN, Zogg GP, Zak DR (2004) Simulated chronic NO3-deposition reduces soil respiration in northern hardwood forests. Glob Chang Biol 10(7):1080–1091. https://doi.org/10.1111/j.1365-2486.2004.00737.x
CrossRef
Google Scholar
Callesen I, Stupak I, Georgiadis P, Johannsen VK, Østergaard HS, Vesterdal L (2015) Soil carbon stock change in the forests of Denmark between 1990 and 2008. Geoderma Reg 5:169–180. https://doi.org/10.1016/j.geodrs.2015.06.003
CrossRef
Google Scholar
Christensen BT (2001) Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur J Soil Sci 52(3):345–353. https://doi.org/10.1046/j.1365-2389.2001.00417.x
CAS
CrossRef
Google Scholar
Conforti M, Luca F, Scarciglia F, Matteucci G, Buttafuoco G (2016) Soil carbon stock in relation to soil properties and landscape position in a forest ecosystem of southern Italy (Calabria region). Catena 144:23–33. https://doi.org/10.1016/j.catena.2016.04.023
CAS
CrossRef
Google Scholar
Covington WW (1981) Changes in forest floor organic-matter and nutrient content following clear cutting in northern hardwoods. Ecology 62(1):41–48. https://doi.org/10.2307/1936666
CrossRef
Google Scholar
Crow SE, Lajtha K, Filley TR, Swanston CW, Bowden RD, Caldwell BA (2009) Sources of plant-derived carbon and stability of organic matter in soil: implications for global change. Glob Chang Biol 15(8):2003–2019. https://doi.org/10.1111/j.1365-2486.2009.01850.x
CrossRef
Google Scholar
Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081):165–173. https://doi.org/10.1038/nature04514
CAS
CrossRef
PubMed
Google Scholar
Davis AA, Stolt MH, Compton JE (2004) Spatial distribution of soil carbon in southern new England hardwood forest landscapes. Soil Sci Soc Am J 68(3):895–903
CAS
CrossRef
Google Scholar
de Schrijver A, de Frenne P, Staelens J, Verstraeten G, Muys B, Vesterdal L, Wuyts K, van Nevel L, Schelfhout S, de Neve S, Verheyen K (2012) Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development. Glob Chang Biol 18(3):1127–1140. https://doi.org/10.1111/j.1365-2486.2011.02572.x
CrossRef
Google Scholar
de Vries W, Solberg S, Dobbertin M, Sterba H, Laubhann D, van Oijen M, Evans C, Gundersen P, Kros J, Wamelink GWW, Reinds GJ, Sutton MA (2009) The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. Forest Ecol Manag 258(8):1814–1823. https://doi.org/10.1016/j.foreco.2009.02.034
CrossRef
Google Scholar
Evers J, Dammann I, Noltensmeier A, Nagel R-V (2008) Auswirkungen von Bodenschutzkalkungen auf Buchenwälder (Fagus sylvatica L.). In: Ergebnisse angewandter Forschung zur Buche. Beiträge aus der NW-FVA, vol 3. Nordwestdeutsche Forstliche Versuchsanstalt (NW-FWA), Göttingen, pp 21–50
Google Scholar
Finer L, Helmisaari HS, Lohmus K, Majdi H, Brunner I, Borja I, Eldhuset T, Godbold D, Grebenc T, Konopka B, Kraigher H, Mottonen MR, Ohashi M, Oleksyn J, Ostonen I, Uri V, Vanguelova E (2007) Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst 141(3):394–405. https://doi.org/10.1080/11263500701625897
CrossRef
Google Scholar
Goidts E, van Wesemael B (2007) Regional assessment of soil organic carbon changes under agriculture in Southern Belgium (1955-2005). Geoderma 141(3-4):341–354. https://doi.org/10.1016/j.geoderma.2007.06.013
CAS
CrossRef
Google Scholar
Golchin A, Baldock JA, Oades JM (1997) A model linking organic matter decomposition, chemistry and aggregate dynamics. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil processes and the carbon cycle. CRC, Boca Raton, FL, pp 245–266
Google Scholar
Groffman PM, Fisk MC, Driscoll CT, Likens GE, Fahey TJ, Eagar C, Pardo LH (2006) Calcium additions and microbial nitrogen cycle processes in a northern hardwood forest. Ecosystems 9(8):1289–1305. https://doi.org/10.1007/s10021-006-0177-z
CAS
CrossRef
Google Scholar
Grüneberg E, Schöning I, Hessenmöller D, Schulze ED, Weisser WW (2013) Organic layer and clay content control soil organic carbon stocks in density fractions of differently managed German beech forests. Forest Ecol Manag 303:1–10. https://doi.org/10.1016/j.foreco.2013.03.014
CrossRef
Google Scholar
Grüneberg E, Ziche D, Wellbrock N (2014) Organic carbon stocks and sequestration rates of forest soils in Germany. Glob Chang Biol 20(8):2644–2662. https://doi.org/10.1111/gcb.12558
CrossRef
PubMed
PubMed Central
Google Scholar
Guckland A, Jacob M, Flessa H, Thomas FM, Leuschner C (2009) Acidity, nutrient stocks, and organic-matter content in soils of a temperate deciduous forest with different abundance of European beech (Fagus sylvatica L.). J Plant Nutr Soil Sci Zeitschrift für Pflanzenernährung und Bodenkunde 172(4):500–511. https://doi.org/10.1002/jpln.200800072
CAS
CrossRef
Google Scholar
Guggenberger G, Zech W, Haumaier L, Christensen BT (1995) Land-use effects on the composition of organic-matter particle-size separates of soil. 2. CPMAS and solution C-13 NMR analysis. Eur J Soil Sci 46(1):147–158. https://doi.org/10.1111/j.1365-2389.1995.tb01821.x
CAS
CrossRef
Google Scholar
Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P (2006) Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87(9):2288–2297. https://doi.org/10.1890/0012-9658(2006)87[2288:tseoda]2.0.co;2
CrossRef
PubMed
Google Scholar
Illmer P, Schinner F (1991) Effects of lime and nutrient salts on the microbiological activities of forest soils. Biol Fertil Soils 11(4):261–266. https://doi.org/10.1007/bf00335845
CrossRef
Google Scholar
IPCC (2003) Good practice guidance for land use, land-use change and forestry. Intergovernmental Panel on Climate Change (IPCC), Kanagawa Prefecture, Japan
Google Scholar
Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3(5):315–322. https://doi.org/10.1038/ngeo844
CAS
CrossRef
Google Scholar
Janzen HH (2004) Carbon cycling in earth systems—a soil science perspective. Agric Ecosyst Environ 104(3):399–417. https://doi.org/10.1016/j.agee.2004.01.040
CAS
CrossRef
Google Scholar
Jastrow JD, Amonette JE, Bailey VL (2007) Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Clim Change 80(1–2):5–23. https://doi.org/10.1007/s10584-006-9178-3
CAS
CrossRef
Google Scholar
Johnson DW, Knoepp JD, Swank WT, Shan J, Morris LA, Van Lear DH, Kapeluck PR (2002) Effects of forest management on soil carbon: results of some long-term resampling studies. Environ Pollut 116:S201–S208. https://doi.org/10.1016/s0269-7491(01)00252-4
CAS
CrossRef
PubMed
Google Scholar
Jonard M, Nicolas M, Coomes DA, Caignet I, Saenger A, Ponette Q (2017) Forest soils in France are sequestering substantial amounts of carbon. Sci Total Environ 574:616–628. https://doi.org/10.1016/j.scitotenv.2016.09.028
CAS
CrossRef
PubMed
Google Scholar
Kalbitz K, Kaiser K, Bargholz J, Dardenne P (2006) Lignin degradation controls the production of dissolved organic matter in decomposing foliar litter. Eur J Soil Sci 57(4):504–516. https://doi.org/10.1111/j.1365-2389.2006.00797.x
CAS
CrossRef
Google Scholar
Kleja DB, Svensson M, Majdi H, Jansson PE, Langvall O, Bergkvist B, Johansson MB, Weslien P, Truusb L, Lindroth A, Agren GI (2008) Pools and fluxes of carbon in three Norway spruce ecosystems along a climatic gradient in Sweden. Biogeochemistry 89(1):7–25. https://doi.org/10.1007/s10533-007-9136-9
CrossRef
Google Scholar
Ladegaard-Pedersen P, Elberling B, Vesterdal L (2005) Soil carbon stocks, mineralization rates, and CO2 effluxes under 10 tree species on contrasting soil types. Can J Forest Res 35(6):1277–1284. https://doi.org/10.1139/x05-045
CAS
CrossRef
Google Scholar
Langenbruch C, Helfrich M, Flessa H (2012) Effects of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia spec.) on soil chemical properties in a mixed deciduous forest. Plant Soil 352(1–2):389–403. https://doi.org/10.1007/s11104-011-1004-7
CAS
CrossRef
Google Scholar
Lark RM, Bellamy PH, Kirk GJD (2006) Baseline values and change in the soil, and implications for monitoring. Eur J Soil Sci 57(6):916–921. https://doi.org/10.1111/j.1365-2389.2006.00875.x
CrossRef
Google Scholar
Leuschner C, Wulf M, Bäuchler P, Hertel D (2013) Soil C and nutrient stores under Scots pine afforestations compared to ancient beech forests in the German Pleistocene: the role of tree species and forest history. Forest Ecol Manag 310:405–415. https://doi.org/10.1016/j.foreco.2013.08.043
CrossRef
Google Scholar
Liski J, Perruchoud D, Karjalainen T (2002) Increasing carbon stocks in the forest soils of western Europe. Forest Ecol Manag 169(1–2):159–175. https://doi.org/10.1016/s0378-1127(02)00306-7
CrossRef
Google Scholar
Lorenz K, Lal R (2010) Carbon sequestration in forest ecosystems. Springer, Dordrecht
CrossRef
Google Scholar
Lovett GM, Weathers KC, Arthur MA, Schultz JC (2004) Nitrogen cycling in a northern hardwood forest: do species matter? Biogeochemistry 67(3):289–308. https://doi.org/10.1023/B:BIOG.0000015786.65466.f5
CAS
CrossRef
Google Scholar
Luyssaert S, Ciais P, Piao SL, Schulze ED, Jung M, Zaehle S, Schelhaas MJ, Reichstein M, Churkina G, Papale D, Abril G, Beer C, Grace J, Loustau D, Matteucci G, Magnani F, Nabuurs GJ, Verbeeck H, Sulkava M, van der Werf GR, Janssens IA, Team C-IS (2010) The European carbon balance. Part 3: forests. Glob Chang Biol 16(5):1429–1450. https://doi.org/10.1111/j.1365-2486.2009.02056.x
CrossRef
Google Scholar
Melvin AM, Lichstein JW, Goodale CL (2013) Forest liming increases forest floor carbon and nitrogen stocks in a mixed hardwood forest. Ecol Appl 23(8):1962–1975. https://doi.org/10.1890/13-0274.1
CrossRef
PubMed
Google Scholar
Nave LE, Vance ED, Swanston CW, Curtis PS (2010) Harvest impacts on soil carbon storage in temperate forests. Forest Ecol Manag 259(5):857–866. https://doi.org/10.1016/j.foreco.2009.12.009
CrossRef
Google Scholar
Oostra S, Majdi H, Olsson M (2006) Impact of tree species on soil carbon stocks and soil acidity in southern Sweden. Scand J Forest Res 21(5):364–371. https://doi.org/10.1080/02827580600950172
CrossRef
Google Scholar
Oste LA, Temminghoff EJM, Van Riemsdijk WH (2002) Solid-solution partitioning of organic matter in soils as influenced by an increase in pH or Ca concentration. Environ Sci Technol 36(2):208–214. https://doi.org/10.1021/es0100571
CAS
CrossRef
PubMed
Google Scholar
Prietzel J, Bachmann S (2012) Changes in soil organic C and N stocks after forest transformation from Norway spruce and Scots pine into Douglas fir, Douglas fir/spruce, or European beech stands at different sites in Southern Germany. Forest Ecol Manag 269:134–148. https://doi.org/10.1016/j.foreco.2011.12.034
CrossRef
Google Scholar
Priha O, Smolander A (1994) Fumigation-extraction and substrate-induced respiration derived microbial biomass-C, and respiration rate in limed soil of Scots pine sapling stands. Biol Fertil Soils 17(4):301–308. https://doi.org/10.1007/bf00383986
CAS
CrossRef
Google Scholar
R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Google Scholar
Reich PB, Oleksyn J, Modrzynski J, Mrozinski P, Hobbie SE, Eissenstat DM, Chorover J, Chadwick OA, Hale CM, Tjoelker MG (2005) Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol Lett 8(8):811–818. https://doi.org/10.1111/j.1461-0248.2005.00779.x
CrossRef
Google Scholar
Richardson M, Stolt M (2013) Measuring soil organic carbon sequestration in aggrading temperate forests. Soil Sci Soc Am J 77(6):2164–2172. https://doi.org/10.2136/sssaj2012.0411
CAS
CrossRef
Google Scholar
Riley H, Bakkegard M (2006) Declines of soil organic matter content under arable cropping in southeast Norway. Acta Agric Scand Sec B Soil Plant Sci 56(3):217–223. https://doi.org/10.1080/09064710510029141
CrossRef
Google Scholar
Rosseel Y (2012) lavaan. An {R} package for structural equation modeling. J Stat Softw 48(2):1–36
CrossRef
Google Scholar
Saby NPA, Bellamy PH, Morvan X, Arrouays D, Jones RJA, Verheijen FGA, Kibblewhite MG, Verdoodt A, Berenyiuveges J, Freudenschuss A, Simota C (2008) Will European soil-monitoring networks be able to detect changes in topsoil organic carbon content? Glob Chang Biol 14(10):2432–2442. https://doi.org/10.1111/j.1365-2486.2008.01658.x
CrossRef
Google Scholar
Schlesinger WH (1991) Biogeochemistry: an analysis of global change. Academic, San Diego
Google Scholar
Schrumpf M, Kaiser K, Guggenberger G, Persson T, Kögel-Knabner I, Schulze ED (2013) Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 10(3):1675–1691. https://doi.org/10.5194/bg-10-1675-2013
CAS
CrossRef
Google Scholar
Schulten H-R, Leinweber P (2000) New insights into organic-mineral particles: composition, properties and models of molecular structure. Biol Fertil Soils 30(5):399–432. https://doi.org/10.1007/s003740050020
CAS
CrossRef
Google Scholar
Schulze ED, Lloyd J, Kelliher FM, Wirth C, Rebmann C, Luhker B, Mund M, Knohl A, Milyukova IM, Schulze W, Ziegler W, Varlagin AB, Sogachev AF, Valentini R, Dore S, Grigoriev S, Kolle O, Panfyorov MI, Tchebakova N, Vygodskaya NN (1999) Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink—a synthesis. Glob Chang Biol 5(6):703–722. https://doi.org/10.1046/j.1365-2486.1999.00266.x
CrossRef
Google Scholar
Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241(2):155–176. https://doi.org/10.1023/a:1016125726789
CAS
CrossRef
Google Scholar
Tan ZX, Lal R, Smeck NE, Calhoun FG (2004) Relationships between surface soil organic carbon pool and site variables. Geoderma 121(3-4):187–195. https://doi.org/10.1016/j.geoderma.2003.11.003
CAS
CrossRef
Google Scholar
Trum F, Titeux H, Ranger J, Delvaux B (2011) Influence of tree species on carbon and nitrogen transformation patterns in forest floor profiles. Ann Forest Sci 68(4):837–847. https://doi.org/10.1007/s13595-011-0080-4
CrossRef
Google Scholar
Vesterdal L (1999) Influence of soil type on mass loss and nutrient release from decomposing foliage litter of beech and Norway spruce. Can J Forest Res 29(1):95–105. https://doi.org/10.1139/cjfr-29-1-95
CrossRef
Google Scholar
Vesterdal L, Dalsgaard M, Felby C, Raulundrasmussen K, Jorgensen BB (1995) Effects of thinning and soil properties on accumulation of carbon, nitrogen and phosphorus in the forest floor of Norway spruce stands. Forest Ecol Manag 77(1–3):1–10. https://doi.org/10.1016/0378-1127(95)03579-y
CrossRef
Google Scholar
Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecol Manag 255(1):35–48. https://doi.org/10.1016/j.foreco.2007.08.015
CrossRef
Google Scholar
Vesterdal L, Clarke N, Sigurdsson BD, Gundersen P (2013) Do tree species influence soil carbon stocks in temperate and boreal forests? Forest Ecol Manag 309:4–18. https://doi.org/10.1016/j.foreco.2013.01.017
CrossRef
Google Scholar
Vogel C, Heister K, Buegger F, Tanuwidjaja I, Haug S, Schloter M, Kögel-Knabner I (2015) Clay mineral composition modifies decomposition and sequestration of organic carbon and nitrogen in fine soil fractions. Biol Fertil Soils 51(4):427–442. https://doi.org/10.1007/s00374-014-0987-7
CAS
CrossRef
Google Scholar
von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57(4):426–445. https://doi.org/10.1111/j.1365-2389.2006.00809.x
CAS
CrossRef
Google Scholar
Wiesmeier M, Prietzel J, Barthold F, Sporlein P, Geuss U, Hangen E, Reischl A, Schilling B, von Lützow M, Kögel-Knabner I (2013) Storage and drivers of organic carbon in forest soils of southeast Germany (Bavaria)—implications for carbon sequestration. Forest Ecol Manag 295:162–172. https://doi.org/10.1016/j.foreco.2013.01.025
CrossRef
Google Scholar
Wolff B, Riek W (1996) Deutscher Waldbodenbericht 1996—Ergebnisse der bundesweiten Bodenzustandserhebung im Wald von 1987-1993. Bundesministerium für Ernährung, Landwirtschaft und Forsten, Bonn, Germany
Google Scholar