Skip to main content

Enriching Word Embeddings for Patent Retrieval with Global Context

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11437))

Included in the following conference series:

Abstract

The training and use of word embeddings for information retrieval has recently gained considerable attention, showing competitive performance across various domains. In this study, we explore the use of word embeddings for patent retrieval, a challenging domain, especially for methods based on distributional semantics. We hypothesize that the previously reported limited effectiveness of semantic approaches, and in particular word embeddings (word2vec Skip-gram) in this domain, is due to inherent constraints on the (short) window context that is too narrow for the model to capture the full complexity of the patent domain. To address this limitation, we jointly draw from local and global contexts for embedding learning. We do this in two ways: (1) adapting the Skip-gram model’s vectors using global retrofitting (2) filtering word similarities using global context. We measure patent retrieval performance using BM25 and LM Extended Translation models and observe significant improvements over three baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our code and the Lucene extensions are available at: github.com/sebastian-hofstaetter/ir-generalized-translation-models.

References

  1. Andersson, L., Lupu, M., Palotti, J., Hanbury, A., Rauber, A.: When is the time ripe for natural language processing for patent passage retrieval? In: Proceedings of CIKM (2016)

    Google Scholar 

  2. Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet project. In: Proceedings of ACL (1998)

    Google Scholar 

  3. Berger, A., Lafferty, J.: Information retrieval as statistical translation. In: Proceedings of SIGIR (1999)

    Google Scholar 

  4. Diaz, F., Mitra, B., Craswell, N.: Query expansion with locally-trained word embeddings. In: Proceedings of ACL (2016)

    Google Scholar 

  5. Faruqui, M., Dodge, J., Jauhar, S.K., Dyer, C., Hovy, E., Smith, N.A.: Retrofitting word vectors to semantic lexicons. In: Proceedings of NAACL-HLT (2015)

    Google Scholar 

  6. Ganitkevitch, J., Van Durme, B., Callison-Burch, C.: PPDB: the paraphrase database. In: Proceedings of NAACL (2013)

    Google Scholar 

  7. Kuzi, S., Shtok, A., Kurland, O.: Query expansion using word embeddings. In: Proceedings of CIKM (2016)

    Google Scholar 

  8. Lupu, M.: On the usability of random indexing in patent retrieval. In: Hernandez, N., Jäschke, R., Croitoru, M. (eds.) ICCS 2014. LNCS (LNAI), vol. 8577, pp. 202–216. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08389-6_17

    Chapter  Google Scholar 

  9. Lupu, M., Hanbury, A.: Patent retrieval. In: Foundations and Trends in Information Retrieval (2013)

    Article  Google Scholar 

  10. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of NIPS (2013)

    Google Scholar 

  11. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38, 39–41 (1995)

    Article  Google Scholar 

  12. Nguyen, G.-H., Soulier, L., Tamine, L., Bricon-Souf, N.: DSRIM: a deep neural information retrieval model enhanced by a knowledge resource driven representation of documents. In: Proceedings of SIGIR (2017)

    Google Scholar 

  13. Piroi, F., Lupu, M., Hanbury, A.: Overview of CLEF-IP 2013 lab. In: Forner, P., Müller, H., Paredes, R., Rosso, P., Stein, B. (eds.) CLEF 2013. LNCS, vol. 8138, pp. 232–249. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40802-1_25

    Chapter  Google Scholar 

  14. Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: Proceedings of SIGIR (1998)

    Google Scholar 

  15. Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of LREC Workshop on New Challenges for NLP Frameworks (2010)

    Google Scholar 

  16. Rekabsaz, N., Lupu, M., Hanbury, A.: Exploration of a threshold for similarity based on uncertainty in word embedding. In: Jose, J.M., et al. (eds.) ECIR 2017. LNCS, vol. 10193, pp. 396–409. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56608-5_31

    Chapter  Google Scholar 

  17. Rekabsaz, N., Lupu, M., Hanbury, A., Zamani, H.: Word embedding causes topic shifting; exploit global context! In: Proceedings of SIGIR (2017)

    Google Scholar 

  18. Rekabsaz, N., Lupu, M., Hanbury, A., Zuccon, G.: Generalizing translation models in the probabilistic relevance framework. In: Proceedings of CIKM (2016)

    Google Scholar 

  19. Xiong, C., Callan, J., Liu, T.-Y.: Word-entity duet representations for document ranking. In: Proceedings of SIGIR (2017)

    Google Scholar 

  20. Xiong, C., Dai, Z., Callan, J., Liu, Z., Power, R.: End-to-end neural ad-hoc ranking with kernel pooling. In: Proceedings of SIGIR (2017)

    Google Scholar 

  21. Zamani, H., Croft, W.B.: Relevance-based word embedding. In: Proceedings of SIGIR (2017)

    Google Scholar 

  22. Zuccon, G., Koopman, B., Bruza, P., Azzopardi, L.: Integrating and evaluating neural word embeddings in information retrieval. In: Proceedings of Australasian Document Computing Symposium (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Hofstätter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hofstätter, S., Rekabsaz, N., Lupu, M., Eickhoff, C., Hanbury, A. (2019). Enriching Word Embeddings for Patent Retrieval with Global Context. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds) Advances in Information Retrieval. ECIR 2019. Lecture Notes in Computer Science(), vol 11437. Springer, Cham. https://doi.org/10.1007/978-3-030-15712-8_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15712-8_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15711-1

  • Online ISBN: 978-3-030-15712-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics