The Nomological Interpretation of the Wave Function

  • Albert Solé
  • Carl HoeferEmail author
Part of the Synthese Library book series (SYLI, volume 406)


Friends of the so-called nomological interpretation of the wave function claim that the wave function does not represent a physical substance, nor does it represent a property of physical things; rather, it is law-like in nature. In this paper we critically assess this claim, exploring both its motivations and its drawbacks and reviewing some of the recent debates in the literature concerning such an interpretation.


  1. Albert, D. (1996). Elementary quantum metaphysics. In J. T. Cushing, A. Fine, & S. Goldstein (Eds.), Bohmian mechanics and quantum theory: An appraisal (pp. 277–284). Dordrecht: Kluwer Academic Publishing.CrossRefGoogle Scholar
  2. Armstrong, D. (1983). What is a law of nature? Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  3. Belot, G. (2012). Quantum states for primitive ontologists. European Journal for Philosophy of Science, 2(1), 67–83.CrossRefGoogle Scholar
  4. Bird, A. (2007). Nature’s metaphysics: Laws and properties. Oxford: Oxford University Press.CrossRefGoogle Scholar
  5. Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of ‘hidden’ variables I and II. Physical Review, 85, 166–193.CrossRefGoogle Scholar
  6. Bohm, D., & Hiley, B. J. (1993). The undivided universe: An ontological interpretation of quantum theory. London: Routledge & Kegan Paul.Google Scholar
  7. DeWitt, B. S. (1967). Quantum theory of gravity. I. The canonical theory. Physical Review, 160, 1113–1148.CrossRefGoogle Scholar
  8. Dretske, F. I. (1977). Laws of nature. Philosophy of Science, 44(2), 248–268.CrossRefGoogle Scholar
  9. Dürr, D., Goldstein, S., & Zanghi, N. (1992). Quantum equilibrium and the origin of the origin of absolute uncertainty. Journal of Statistical Physics, 67, 843–907.CrossRefGoogle Scholar
  10. Dürr, D., Goldstein, S., & Zanghi, N. (1997). Bohmian mechanics and the meaning of the wave function. In R. S. Cohen, M. Horne, & J. Stachel (Eds.), Experimental metaphysics: Quantum mechanical studies for Abner Shimony (pp. 25–38). Berlin: Springer.Google Scholar
  11. Earman, J. (1989). World enough and space-time: Absolute vs. relational theories of space and time. Cambridge, MA/London: MIT Press.Google Scholar
  12. Esfeld, M., Lazarovici, D., Hubert, M., & Dürr, D. (2014). The ontology of Bohmian mechanics. British Journal for the Philosophy of Science, 65, 773–796.CrossRefGoogle Scholar
  13. Goldstein, S., & Zanghi, N. (2013). Reality and the role of the wave function in quantum theory. In A. Ney & D. Albert (Eds.), The wavefunction: Essays on the metaphysics of quantum mechanics (pp. 91–109). Oxford: Oxford University Press.CrossRefGoogle Scholar
  14. Lange, M. (2009). Laws and lawmakers: Science, metaphysics, and the laws of nature. Oxford: Oxford University Press.CrossRefGoogle Scholar
  15. Maudlin, T. (2007). The metaphysics within physics. New York: Oxford University Press.CrossRefGoogle Scholar
  16. Rivat, S. (2016). On the metaphysics of quantum mechanics: Why the wave function is not a field. Unpublished manuscript available at:
  17. Suárez, M. (2015). Bohmian dispositions. Synthese, 192, 3203–3228.CrossRefGoogle Scholar
  18. Wallace, D., & Timpson, C. (2010). Quantum mechanics on spacetime I: Spacetime state realism. British Journal for the Philosophy of Science, 61(4), 697–727.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departament de FilosofiaUniversitat de BarcelonaBarcelonaSpain
  2. 2.ICREABarcelonaSpain

Personalised recommendations