The Reality of the Wavefunction: Old Arguments and New

  • Harvey R. BrownEmail author
Part of the Synthese Library book series (SYLI, volume 406)


The recent philosophy of Quantum Bayesianism, or QBism, represents an attempt to solve the traditional puzzles in the foundations of quantum theory by denying the objective reality of the quantum state. Einstein had hoped to remove the spectre of nonlocality in the theory by also assigning an epistemic status to the quantum state, but his version of this doctrine was recently proved to be inconsistent with the predictions of quantum mechanics. In this essay, I present plausibility arguments, old and new, for the reality of the quantum state, and expose what I think are weaknesses in QBism as a philosophy of science.



I thank the organisers of the XII International Ontology Congress for the kind invitation to contribute to these proceedings. I am also grateful to David Wallace for useful remarks, and to Rhys Borchert, James Read and particularly Christopher Fuchs and Christopher Timpson for invaluable critical comments on the first draft of this paper. None should be taken to endorse the arguments presented here.


  1. Bell, J. S. (1990). Against ‘measurement’. Physics World, 3(8), 33–40.CrossRefGoogle Scholar
  2. Bell, M., & Gao, S. (Eds.) (2016). Quantum nonlocality and reality. Cambridge: Cambridge University Press.Google Scholar
  3. Berkeley, G. (1710). Of the principles of human knowledge: Part 1, republished In A. A. Luce & T. E. Jessop (Eds.), The works of George Berkeley, bishop of cloyne. London: Thomas Nelson and Sons.Google Scholar
  4. Brown, H. R. (2011). Curious and sublime: The connection between uncertainty and probability in physics. Philosophical Transactions of the Royal Society A, 369, 1–15. CrossRefGoogle Scholar
  5. Brown, H. R., & Lehmkuhl, D. (2016). Einstein, the reality of space, and the action-reaction principle. In P. Ghose (Ed.), Einstein, Tagore and the nature of reality (pp. 9–36). London/New York: Routledge. arXiv:1306.4902v1.Google Scholar
  6. Brown, H. R., & Read, J. (2016). Clarifying possible misconceptions in the foundations of general relativity. American Journal of Physics, 84(5), 327–334.CrossRefGoogle Scholar
  7. Brown, H. R., & Wallace, D. (2005). Solving the measurement problem: de Broglie-Bohm loses out to Everett. Foundations of Physics, 35, 517–540. quant-ph/0403094; PITT-PHIL-SCI 1659.Google Scholar
  8. Brown, H. R., Summhammer, J., Callaghan, R., & Kaloyerou, P. (1992). Neutron interferometry with antiphase modulation. Physics Letters A, 163, 21–25.CrossRefGoogle Scholar
  9. Brown, H. R., Dewdney, C., & Horton, G. (1995). Bohm particles and their detection in the light of neutron interferometry. Foundations of Physics, 25, 329–334.CrossRefGoogle Scholar
  10. Bush, J. W. M. (2015). The new wave of pilot-wave theory. Physics Today, 68(8), 47–53. CrossRefGoogle Scholar
  11. Callender, C. (2017). The Redundancy Argument Against Bohm’s Theory, manuscript available at Google Scholar
  12. Chandrasekhar, S. (1931). The density of white dwarfstars. Philosophical Magazine, 11, 592–596.Google Scholar
  13. Dürr, D., Goldstein, S., & Zanghi, N. (1997). Bohmian mechanics and the meaning of the wave function. In R. S. Cohen, M. Horne, & J. Stachel (Eds.), Experimental metaphysics: Quantum mechanical studies for Abner Shimony, Vol. 1 (Boston studies in the philosophy of science, Vol. 193, pp. 25–38). Dordrecht: Kluwer Academic PublishersGoogle Scholar
  14. Dyson, F. J. (1967). Ground-state energy of a finite system of charged particles. Journal of Mathematical Physics, 8, 1538–1545.CrossRefGoogle Scholar
  15. Dyson, F. J., & Lenard, A. (1967). Stability of matter. I. Journal of Mathematical Physics, 8, 423–434.CrossRefGoogle Scholar
  16. Dyson, F. J., & Lenard, A. (1968). Stability of matter. I. Journal of Mathematical Physics, 9, 698–711.CrossRefGoogle Scholar
  17. Einstein, A. (1970). Remarks concerning the essays brought together in this co-operative volume. In P. A. Schilpp (Ed.), Albert Einstein: Philosopher-scientist (3rd ed., Vol. 2). La Salle: Open Court.Google Scholar
  18. Frank, R. L. (2011). Sobolev inequalities and uncertainty principles in mathematical physics: Part 1. Lecture notes (LMU Munich). Available at
  19. Frohlich, J. (2009). Spin, or actually: Spin and quantum statistics. In B. Duplantier, J.-M. Raimond, & V. Rivasseau (Eds.), The spin (pp. 1–60). Basel/Switzerland: Birkhäuser Verlag.Google Scholar
  20. Fuchs, C. A. (2002a). Quantum mechanics as quantum information (and only a little more). arXiv:quant-ph/0205039v1.Google Scholar
  21. Fuchs, C. A. (2002b). The anti-vaxjo interpretation of quantum mechanics. Google Scholar
  22. Fuchs, C. A. (2016). On participatory realism. arXiv:1601.04360v3 [quant-ph].Google Scholar
  23. Fuchs, C. A. & Schack, R. (2004). Unknown quantum states and operations, a Bayesian view arXiv:quant-ph/0404156v1.Google Scholar
  24. Fuchs, C. A., Mermin, N. D., & Schack, R. (2014). An introduction to QBism with an application to the locality of quantum mechanics. American Journal of Physics, 82(8), 749–754.CrossRefGoogle Scholar
  25. Gao, S. (2017). Meaning of the wavefunction. In search of the ontology of quantum mechanics. Cambridge: Cambridge University Press. arXiv:1611.02738v1 [quant-ph].Google Scholar
  26. Hardy, G. H. (1920). Note on a theorem of Hilbert. Mathematische Zeitschrift, 6(3–4), 314–317.CrossRefGoogle Scholar
  27. Harrigan, N., & Spekkens, R. W. (2010). Einstein, incompleteness, and the epistemic view of quantum states. Foundations of Physics, 40(2), 125–157. arXiv:0706.2661. CrossRefGoogle Scholar
  28. Healey, R. (2016). Quantum-Bayesian and pragmatist views of quantum theory. Google Scholar
  29. Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106(4), 620–630.CrossRefGoogle Scholar
  30. Kaloyerou, P., & Brown, H. R. (1992). On neutron interferometer partial absorption experiments. Physica B, 176, 78–92.CrossRefGoogle Scholar
  31. Leifer, M. S. (2014). Is the quantum state real? An extended review of ψ-ontology theorems. Quanta, 3, 67–155.CrossRefGoogle Scholar
  32. Leinaas, J. M., & Myrheim, J. (1977). On the theory of identical particles. Il Nuovo Cimento B, 37(1), 1–23.CrossRefGoogle Scholar
  33. Lieb, E. H. (1976). The stability of matter. Reviews of Modern Physics, 48, 553–569.CrossRefGoogle Scholar
  34. Lieb, E. H. (1990). The stability of matter: From atoms to stars. Bulletin of the American Mathematical Society, 22(1), 1–49.CrossRefGoogle Scholar
  35. Lieb, E. H., & Lebowitz, J. L. (1972). The constitution of matter: Existence of thermodynamics for systems composed of electrons and nuclei. Advances in Mathematics, 9, 316–398.CrossRefGoogle Scholar
  36. Lieb, E. H., & Seiringer, R. (2010). Stability of matter in quantum mechanics. Cambridge: Cambridge University Press.Google Scholar
  37. Lieb, E. H., & Thirring, W. (1975). Bound for the kinetic energy of fermions which proves the stability of matter. Physical Review Letters, 35(11), 687–689.CrossRefGoogle Scholar
  38. Lieb, E. H., & Thirring, W. (1976). Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In E. Lieb, B. Simon, & A. Wightman (Eds.), Studies in mathematical physics (pp. 269–303). Princeton: Princeton University Press.Google Scholar
  39. Loss, M. (2005). Stability of matter.
  40. Maudlin, T. (2010). Can the world be only wavefunction? In S. Saunders, J. Barrett, A. Kent, & D. Wallace (Eds.), Many worlds? Everett, quantum theory, & reality (pp. 121–143). Oxford: Oxford University Press.CrossRefGoogle Scholar
  41. Mermin, D. (2016). Why QBism is not the copenhagen interpretation and what John Bell might have thought of it. In Quantum [Un]Speakables II. Part of the series the frontiers collection (pp. 83–93). Springer. arXiv:1409.2454V1 [quant-ph].Google Scholar
  42. Merzbacher, E. (1962). Single valuedness of wave functions. American Journal of Physics, 30(4), 237–247.CrossRefGoogle Scholar
  43. Myrvold, W. C. (2015). What is a wavefunction? Synthese, 192(10), 3247–3274.CrossRefGoogle Scholar
  44. Ney, A. (2015). Fundamental physical ontologies and the constraint of empirical coherence: A defense of wave function realism. Synthese, 192(10), 3105–3124.CrossRefGoogle Scholar
  45. Prange, R. E., & Girvin, S. M. (Eds.) (1990). The quantum hall effect (Graduate texts in contemporary physics). Berlin/Heidelberg: Springer.Google Scholar
  46. Pusey, M. F., Barrett, J., & Rudolph, T. (2012). On the reality of the quantum state. Nature Physics, 8, 475–478. arXiv:1111.3328. CrossRefGoogle Scholar
  47. Seiringer, R. (1990). Inequalities for Schrödinger operators and applications to the stability of matter problem. Google Scholar
  48. Sobolev, S. L. (1938). On a theorem of functional analysis (in Russian). Mat. Sb., 46, 471–497. English transl.: American Mathematical Society, Transl., II. Ser. 34, 39–68 (1963)Google Scholar
  49. Squires, E., Hardy, L., & Brown, H. R. (1994). Non-locality from an analogue of the quantum Zeno effect. Studies in History and Philosophy of Science, 25(3), 425–435.CrossRefGoogle Scholar
  50. Szriftgiser, P., Guéry-Odelin, D., Arndt, M., & Dalibard, J. (1996). Atomic wave diffraction and interference using temporal slits. Physical Review Letters, 77(1), 4–7.CrossRefGoogle Scholar
  51. Thirring, W. (1986). Stability of matter. In V. Gorini & A. Frigerio (Eds.), Fundamental aspects of quantum theory (pp. 343–354). New York: Plenum Press.CrossRefGoogle Scholar
  52. Timpson, C. (2008). Quantum Bayesianism: A study. arXiv:0804.2047v1 [quant-ph].Google Scholar
  53. Tye, M. (2016). Qualia. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2016 Edition).
  54. Wallace, D., & Timpson, C. (2010). Quantum mechanics on spacetime I: Spacetime state realism. British Journal for the Philosophy of Science, 61, 697–727.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of PhilosophyUniversity of OxfordOxfordUK

Personalised recommendations