How to Frame a Mathematician

Modelling the Cognitive Background of Proofs
Part of the Synthese Library book series (SYLI, volume 407)


Frames are a concept in knowledge representation that explains how the receiver, using background information, completes the information conveyed by the sender. This concept is used in different disciplines, most notably in cognitive linguistics and artificial intelligence. This paper argues that frames can serve as the basis for describing mathematical proofs. The usefulness of the concept is illustrated by giving a partial formalisation of proof frames, specifically focusing on induction proofs, and relevant parts of the mathematical theory within which the proofs are conducted; for the latter, we look at natural numbers and trees specifically.


  1. Azzouni, J. (2004). The derivation-indicator view of mathematical practice. Philosophia Mathematica, 12(2), 81–106.CrossRefGoogle Scholar
  2. Azzouni, J. (2009). Why do informal proofs conform to formal norms? Foundations of Science, 14(1–2), 9–26.CrossRefGoogle Scholar
  3. Bollobás, B. (1995). Extremal graph theory. In R. L. Graham, M. Grotschel, & L. Lovasz (Eds.), Handbook of combinatorics (Vol. 2, pp. 1231–1292). Amsterdam/New York: Elsevier.Google Scholar
  4. Carl, M., & Koepke, P. (2010). Interpreting Naproche—An algorithmic approach to the derivation-indicator view. In Proceedings of the International Symposium on Mathematical Practice and Cognition (pp. 7–10).Google Scholar
  5. Carpenter, B. (1992). The logic of typed feature structures (Cambridge tracts in theoretical computer science). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  6. Coq Development Team. (2017). The Coq proof assistant: Reference manual, version 8.7.2. INRIA.
  7. Cramer, M. (2013). Proof-checking mathematical texts in controlled natural language. Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universität Bonn.Google Scholar
  8. Cramer, M., et al. (2009). The Naproche project: Controlled natural language proof checking of mathematical texts. In N. E. Fuchs (Ed.), Controlled natural language (Lecture notes in computer science, Vol. 5972, pp. 170–186). Heidelberg: Springer.Google Scholar
  9. Diestel, R. (2006). Graph theory. Heidelberg: Springer.Google Scholar
  10. Fillmore, C. (1968). The case for case. In E. Bach & R. T. Harms (Eds.), Universals in linguistic theory (pp. 1–88). London: Holt, Rinehart, and Winston.Google Scholar
  11. Kowalski, E. (2016). Linear algebra (Lecture notes). ETH Zurich, published at
  12. Marlow, S. (Ed.). (2010). Haskell 2000 language report. Haskell 2010 Committee.
  13. Minsky, M. (1974). A framework for representing knowledge. Technical report. Cambridge, MA: MIT.Google Scholar
  14. Rav, Y. (2007). A critique of a formalist-mechanist version of the justification of arguments in mathematicians’ proof practices. Philosophia Mathematica, 15(3), 291–320. CrossRefGoogle Scholar
  15. Roberts, R. B., & Ira, P. Goldstein (1977a). The FRL manual. Technical report. Cambridge, MA: MIT.Google Scholar
  16. Roberts, R. B., & Ira, P. Goldstein (1977b). The FRL primer. Technical report. Cambridge, MA: MIT.Google Scholar
  17. Ruppenhofer, J., et al. (2006). FrameNet II: Extended theory and practice. Distributed with the frameNet data. Berkeley: International Computer Science Institute.Google Scholar
  18. Schank, R. C., & Abelson, R. P. (1977). Scripts, plans, goals and understanding: An inquiry into human knowledge structures. Hillsdale: L. Erlbaum.Google Scholar
  19. Tanswell, F. (2015). A problem with the dependence of informal proofs on formal proofs. Philosophia Mathematica, 23(3), 295–310. CrossRefGoogle Scholar
  20. Túrán, P. (1941). Egy gráfelméleti szélsőértékfeladatról – Eine Extremalaufgabe aus der Graphentheorie. Matematikai és Fizikai Lapok, 48, 436–452.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of the HumanitiesUniversity of Duisburg-EssenEssenGermany
  2. 2.Leibniz-Institut für Deutsche SpracheDigitale SprachwissenschaftMannheimGermany
  3. 3.Institute of PhilosophyUniversity of HamburgHamburgGermany
  4. 4.Center for Information and Language ProcessingLudwig-Maximilians-Universität MünchenMunichGermany
  5. 5.Institute for German Studies, LinguisticsUniversity of Duisburg-EssenEssenGermany

Personalised recommendations