Skip to main content

Behavioural Biometric Continuous User Authentication Using Multivariate Keystroke Streams in the Spectral Domain

  • Conference paper
  • First Online:
Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2017)

Abstract

Continuous authentication is significant with respect to many online applications where it is desirable to monitor a user’s identity throughout an entire session; not just at the beginning of the session. One example application domain, where this is a requirement, is in relation to Massive Open Online Courses (MOOCs) when users wish to obtain some kind of certification as evidence that they have successfully competed a course. Such continuous authentication can best be realised using some forms of biometric checking; traditional user credential checking methods, for example username and password checking, only provide for “entry” authentication. In this paper, we introduce a novel method for the continuous authentication of computer users founded on keystroke dynamics (keyboard behaviour patterns); a form of behavioural biometric. The proposed method conceptualises keyboard dynamics in terms of a Multivariate-Keystroke Time Series which in turn can be transformed into the spectral domain. The time series can then be monitored dynamically for typing patterns that are indicative of a claimed user. Two transforms are considered, the Discrete Fourier Transform and the Discrete Wavelet Transform. The proposed method is fully described and evaluated, in the context of impersonation detection, using real keystroke datasets. The reported results indicate that the proposed time series mechanism produced an excellent performance, outperforming the comparator approaches by a significant margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, A.A.E., Traore, I.: A new biometric technology based on mouse dynamics. IEEE Trans. Dependable Secure Comput. 4(3), 165–179 (2007)

    Article  Google Scholar 

  2. Alshehri, A., Coenen, F., Bollegala, D.: Accurate continuous and non-intrusive user authentication with multivariate keystroke streaming. In: Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, pp. 61–70. SciTePress, INSTICC (2017). https://doi.org/10.5220/0006497200610070

  3. Alshehri, A., Coenen, F., Bollegala, D.: Spectral analysis of keystroke streams: towards effective real-time continuous user authentication. In: Proceedings of the 4th International Conference on Information Systems Security and Privacy - Volume 1: ICISSP, pp. 62–73. SciTePress, INSTICC (2018). https://doi.org/10.5220/0006606100620073

  4. Asha, S., Chellappan, C.: Authentication of e-learners using multimodal biometric technology. In: International Symposium on Biometrics and Security Technologies, 2008, ISBAST 2008, pp. 1–6. IEEE (2008)

    Google Scholar 

  5. Bergadano, F., Gunetti, D., Picardi, C.: User authentication through keystroke dynamics. ACM Trans. Inf. Syst. Secur. (TISSEC) 5(4), 367–397 (2002)

    Article  Google Scholar 

  6. Bours, P.: Continuous keystroke dynamics: a different perspective towards biometric evaluation. Inf. Secur. Tech. Rep. 17(1), 36–43 (2012)

    Article  Google Scholar 

  7. Breslow, L., Pritchard, D.E., DeBoer, J., Stump, G.S., Ho, A.D., Seaton, D.T.: Studying learning in the worldwide classroom: Research into edx’s first MOOC. Res. Pract. Assess. 8, 13–25 (2013)

    Google Scholar 

  8. Burrus, C.S., Gopinath, R.A., Guo, H.: Introduction to Wavelets and Wavelet Transforms: A Primer. Prentice-Hall Inc., Englewood Cliffs (1997)

    Google Scholar 

  9. Chan, K.P., Fu, A.W.C.: Efficient time series matching by wavelets. In: Proceedings of 15th International Conference on Data Engineering, 1999, pp. 126–133. IEEE (1999)

    Google Scholar 

  10. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex fourier series. Math. Comput. 19(90), 297–301 (1965)

    Article  MathSciNet  Google Scholar 

  11. Dowland, P.S., Furnell, S.M.: A long-term trial of keystroke profiling using digraph, trigraph and keyword latencies. In: Deswarte, Y., Cuppens, F., Jajodia, S., Wang, L. (eds.) SEC 2004. ITIFIP, vol. 147, pp. 275–289. Springer, Boston, MA (2004). https://doi.org/10.1007/1-4020-8143-X_18

    Chapter  Google Scholar 

  12. Edwards, T.: Discrete wavelet transforms: theory and implementation. Universidad de (1991)

    Google Scholar 

  13. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases. vol. 23. ACM (1994)

    Google Scholar 

  14. Furnell, S., Karweni, T.: Security issues in online distance learning. Vine 31(2), 28–35 (2001)

    Article  Google Scholar 

  15. Gabor, D.: Theory of communication. part 1: the analysis of information. J. Inst. Electr. Eng.-Part III: Radio Commun. Eng. 93(26), 429–441 (1946)

    Google Scholar 

  16. Gaines, R.S., Lisowski, W., Press, S.J., Shapiro, N.: Authentication by keystroke timing: some preliminary results. Technical report, DTIC Document (1980)

    Google Scholar 

  17. Gunetti, D., Picardi, C.: Keystroke analysis of free text. ACM Trans. Inf. Syst. Secur. (TISSEC) 8(3), 312–347 (2005)

    Article  Google Scholar 

  18. Haar, A.: Zur theorie der orthogonalen funktionensysteme. Math. Ann. 69(3), 331–371 (1910)

    Article  MathSciNet  Google Scholar 

  19. Itakura, F.: Minimum prediction residual principle applied to speech recognition. IEEE Trans. Acoust. Speech Signal Process. 23, 52–72 (1975)

    Article  Google Scholar 

  20. Jain, A., Hong, L., Pankanti, S.: Biometric identification. Commun. ACM 43(2), 90–98 (2000)

    Article  Google Scholar 

  21. Janacek, G.J., Bagnall, A.J., Powell, M.: A likelihood ratio distance measure for the similarity between the fourier transform of time series. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 737–743. Springer, Heidelberg (2005). https://doi.org/10.1007/11430919_85

    Chapter  Google Scholar 

  22. Janakiraman, R., Sim, T.: Keystroke dynamics in a general setting. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 584–593. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74549-5_62

    Chapter  Google Scholar 

  23. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction for fast similarity search in large time series databases. Knowl. Inf. Syst. 3(3), 263–286 (2001)

    Article  Google Scholar 

  24. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Locally adaptive dimensionality reduction for indexing large time series databases. ACM Sigmod Rec. 30(2), 151–162 (2001)

    Article  Google Scholar 

  25. Maas, A., Heather, C., Do, C.T., Brandman, R., Koller, D., Ng, A.: Offering verified credentials in massive open online courses: MOOCs and technology to advance learning and learning research (ubiquity symposium). Ubiquity 2014(May), 2 (2014)

    Article  Google Scholar 

  26. Maltoni, D., Maio, D., Jain, A., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, Heidelberg (2009)

    Book  Google Scholar 

  27. Mantyjarvi, J., Lindholm, M., Vildjiounaite, E., Makela, S.M., Ailisto, H.: Identifying users of portable devices from gait pattern with accelerometers. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, (ICASSP’05), vol. 2, pp. ii–973. IEEE (2005)

    Google Scholar 

  28. Moini, A., Madni, A.M.: Leveraging biometrics for user authentication in online learning: a systems perspective. IEEE Syst. J. 3(4), 469–476 (2009)

    Article  Google Scholar 

  29. Monrose, F., Rubin, A.: Authentication via keystroke dynamics. In: Proceedings of the 4th ACM Conference on Computer and Communications Security, pp. 48–56. ACM (1997)

    Google Scholar 

  30. Monrose, F., Rubin, A.D.: Keystroke dynamics as a biometric for authentication. Future Gener. Comput. Syst. 16(4), 351–359 (2000)

    Article  Google Scholar 

  31. Niennattrakul, V., Ratanamahatana, C.A.: Shape averaging under time warping. In: 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2009, ECTI-CON 2009, vol. 2, pp. 626–629. IEEE (2009)

    Google Scholar 

  32. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The feret evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  33. Revett, K.: A bioinformatics based approach to user authentication via keystroke dynamics. Int. J. Control Autom. Syst. 7(1), 7–15 (2009)

    Article  Google Scholar 

  34. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization fro spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26, 43–49 (1978)

    Article  Google Scholar 

  35. Staszewski, W.J., Worden, K., Tomlinson, G.R.: Time-frequency analysis in gearbox fault detection using the wigner-ville distribution and pattern recognition. Mech. Syst. Signal Process. 11(5), 673–692 (1997)

    Article  Google Scholar 

  36. Traore, I.: Continuous Authentication Using Biometrics: Data, Models, and Metrics: Data, Models, and Metrics. IGI Global, Hershey (2011)

    Google Scholar 

  37. Unar, J., Seng, W.C., Abbasi, A.: A review of biometric technology along with trends and prospects. Pattern Recogn. 47(8), 2673–2688 (2014)

    Article  Google Scholar 

  38. Vielhauer, C., Steinmetz, R.: Handwriting: feature correlation analysis for biometric hashes. EURASIP J. Appl. Signal Process. 2004, 542–558 (2004)

    Google Scholar 

  39. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Experimental comparison of representation methods and distance measures for time series data. Data Min. Knowl. Disc. 26(2), 275–309 (2013)

    Article  MathSciNet  Google Scholar 

  40. Wildes, R.P.: Iris recognition: an emerging biometric technology. Proc. IEEE 85(9), 1348–1363 (1997)

    Article  Google Scholar 

  41. Wu, P.Y., Fang, C.C., Chang, J.M., Gilbert, S.B., Kung, S.: Cost-effective kernel ridge regression implementation for keystroke-based active authentication system. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6028–6032. IEEE (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Alshehri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alshehri, A., Coenen, F., Bollegala, D. (2019). Behavioural Biometric Continuous User Authentication Using Multivariate Keystroke Streams in the Spectral Domain. In: Fred, A., et al. Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2017. Communications in Computer and Information Science, vol 976. Springer, Cham. https://doi.org/10.1007/978-3-030-15640-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15640-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15639-8

  • Online ISBN: 978-3-030-15640-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics