Skip to main content

Electrical AFM for the Analysis of Resistive Switching

  • Chapter
  • First Online:
Electrical Atomic Force Microscopy for Nanoelectronics

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Resistive switching (RS), the property of reversible changes in electrical resistance of a metal/insulator/metal cell upon electrical stimulation, has been widely studied in the last few decades for non-volatile memories and, more recently, for logic, alternative computation and sensor purposes. Atomic force microscopy (AFM) has been widely used to characterize switching behaviors and understand their underpinning mechanisms due to its unique capability and versatility for highly localized in situ and ex situ studies. The present chapter provides a brief introduction to the physics of RS and AFM schemes used to study RS, followed by an overview of recent research on RS performed by means of AFM. A particular emphasis is given to innovative AFM techniques and AFM-based studies of significant scientific contribution to the field of RS in the last few decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Sawa, Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (2008)

    Article  Google Scholar 

  2. R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009)

    Article  Google Scholar 

  3. D.S. Jeong et al., Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75, 076502 (2012)

    Article  ADS  Google Scholar 

  4. H.-Y. Chen et al., Resistive random access memory (RRAM) technology: From material, device, selector, 3D integration to bottom-up fabrication. J. Electroceramics 39, 21–38 (2017)

    Article  Google Scholar 

  5. J. Frascaroli, F.G. Volpe, S. Brivio, S. Spiga, Effect of Al doping on the retention behavior of HfO2 resistive switching memories. Microelectron. Eng. 147, 104–107 (2015)

    Article  Google Scholar 

  6. S. Brivio, J. Frascaroli, S. Spiga, Role of Al doping in the filament disruption in HfO2 resistance switches. Nanotechnology 28, 395202 (2017)

    Article  Google Scholar 

  7. M. Azzaz et al., Improvement of performances HfO2-based RRAM from elementary cell to 16 kb demonstrator by introduction of thin layer of Al2O3. Solid-State Electron. 125, 182–188 (2016)

    Article  ADS  Google Scholar 

  8. M.-J. Lee et al., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat. Mater. 10, 625–630 (2011)

    Article  ADS  Google Scholar 

  9. F. Nardi et al., Sub-10 μA reset in NiO-based resistive switching memory (RRAM) cells, in 2010 IEEE International Memory Workshop, (2010), pp. 1–4. https://doi.org/10.1109/imw.2010.5488317

  10. B. Govoreanu et al., 10 × 10 nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation, in 2011 International Electron Devices Meeting (2011), pp. 31.6.1–31.6.4. https://doi.org/10.1109/iedm.2011.6131652

  11. K.-S. Li et al., Utilizing Sub-5 nm sidewall electrode technology for atomic-scale resistive memory fabrication, in 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers 1–2 (2014). https://doi.org/10.1109/vlsit.2014.6894402

  12. International Technology Roadmap for Semiconductors, 2013 [online]. Available: http://www.itrs2.net/

  13. D.S. Jeong, K.M. Kim, S. Kim, B.J. Choi, C.S. Hwang, Memristors for energy-efficient new computing paradigms. Adv. Electron. Mater. 2, 1600090 (2016)

    Article  Google Scholar 

  14. J. Borghetti et al., ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010)

    Article  ADS  Google Scholar 

  15. S. Agarwal et al., Energy scaling advantages of resistive memory crossbar based computation and its application to sparse coding. Front. Neurosci. 9 (2016)

    Google Scholar 

  16. G.W. Burr et al., Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124 (2017)

    Google Scholar 

  17. E. Covi et al., Analog memristive synapse in spiking networks implementing unsupervised learning. Front. Neurosci. 10, 482 (2016)

    Article  Google Scholar 

  18. M. Prezioso et al., Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015)

    Article  ADS  Google Scholar 

  19. S. Brivio et al., Extended memory lifetime in spiking neural networks employing memristive synapses with nonlinear conductance dynamics. Nanotechnology 30, 015102 (2019)

    Article  ADS  Google Scholar 

  20. S. Menzel, U. Böttger, M. Wimmer, M. Salinga, Physics of the switching kinetics in resistive memories. Adv. Funct. Mater. 25, 6306–6325 (2015)

    Article  Google Scholar 

  21. B. Magyari-Köpe, M. Tendulkar, S.-G. Park, H.D. Lee, Y. Nishi, Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3. Nanotechnology 22, 254029 (2011)

    Google Scholar 

  22. A. Padovani, L. Larcher, O. Pirrotta, L. Vandelli, G. Bersuker, Microscopic modeling of HfOx RRAM operations: from forming to switching. IEEE Trans. Electron Devices 62, 1998–2006 (2015)

    Article  ADS  Google Scholar 

  23. K. Kinoshita et al., Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance. Appl. Phys. Lett. 93, 033506 (2008)

    Article  ADS  Google Scholar 

  24. J. Kim et al., Switching power universality in unipolar resistive switching memories. Sci. Rep. 6, 23930 (2016)

    Article  ADS  Google Scholar 

  25. U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56, 193–200 (2009)

    Article  ADS  Google Scholar 

  26. S. Brivio, S. Spiga, Stochastic circuit breaker network model for bipolar resistance switching memories. J. Comput. Electron. 16, 1154–1166 (2017)

    Article  Google Scholar 

  27. B. Gao et al., Oxide-based RRAM switching mechanism: a new ion-transport-recombination model, in Electron Devices Meeting, 2008. IEDM 2008. IEEE International (2008), pp. 1–4. https://doi.org/10.1109/iedm.2008.4796751

  28. H. Sun et al., Direct observation of conversion between threshold switching and memory switching induced by conductive filament morphology. Adv. Funct. Mater. 24, 5679–5686 (2014)

    Article  ADS  Google Scholar 

  29. U. Celano et al., Tuning the switching behavior of conductive-bridge resistive memory by the modulation of the cation-supplier alloys. Microelectron. Eng. 167, 47–51 (2017)

    Article  Google Scholar 

  30. D.-H.H. Kwon et al., Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010)

    Article  ADS  Google Scholar 

  31. H. Moon et al., Interfacial chemical bonding-mediated ionic resistive switching. Sci. Rep. 7, 1264 (2017)

    Article  ADS  Google Scholar 

  32. M. Kudo et al., Real-time resistive switching of Cu/MoOx ReRAM observed in transmission electron microscope, in 2014 Silicon Nanoelectronics Workshop (SNW)(2014), pp. 1–2. https://doi.org/10.1109/snw.2014.7348556

  33. Y. Du et al., The resistive switching in TiO2 films studied by conductive atomic force microscopy and Kelvin probe force microscopy. AIP Adv. 3 (2013)

    Article  ADS  Google Scholar 

  34. E. Strelcov et al., Space- and time-resolved mapping of ionic dynamic and electroresistive phenomena in lateral devices. ACS Nano 7, 6806–6815 (2013)

    Article  Google Scholar 

  35. S. Hong et al., Large resistive switching in ferroelectric BiFeO3 nano-island based switchable diodes. Adv. Mater. 25, 2339–2343 (2013)

    Article  Google Scholar 

  36. V. Zade, H.-S. Kang, M.H. Lee, Effect of mechanical and electrical stimuli in conductive atomic force microscopy with noble metal-coated tips. J. Appl. Phys. 123, 015301 (2018)

    Article  ADS  Google Scholar 

  37. F.J. Giessibl, Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003)

    Article  ADS  Google Scholar 

  38. M.H. Lee, C.S. Hwang, Resistive switching memory: observations with scanning probe microscopy. Nanoscale 3, 490–502 (2011)

    Article  ADS  Google Scholar 

  39. B.J. Choi et al., Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 033715 (2005)

    Article  ADS  Google Scholar 

  40. B. Singh, B.R. Mehta, D. Varandani, A.V. Savu, J. Brugger, CAFM investigations of filamentary conduction in Cu2O ReRAM devices fabricated using stencil lithography technique. Nanotechnology 23, 495707 (2012)

    Article  Google Scholar 

  41. H. Woo, S.K. Vishwanath, S. Jeon, Excellent resistive switching performance in Cu-Se-based atomic switch using lanthanide metal nanolayer at Cu-Se/Al2O3 interface. ACS Appl. Mater. Interfaces (2018). https://doi.org/10.1021/acsami.7b18055

    Article  Google Scholar 

  42. S. Claramunt et al., Non-homogeneous conduction of conductive filaments in Ni/HfO2/Si resistive switching structures observed with CAFM. Microelectron. Eng. 147, 335–338 (2015)

    Article  Google Scholar 

  43. R. Münstermann et al., Morphological and electrical changes in TiO2 memristive devices induced by electroforming and switching. Phys. Status Solidi RRL Rapid Res. Lett. 4, 16–18 (2010)

    Article  ADS  Google Scholar 

  44. U. Celano et al., Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. Nano Lett. 14, 2401–2406 (2014)

    Article  ADS  Google Scholar 

  45. M. Lanza, U. Celano, F. Miao, Nanoscale characterization of resistive switching using advanced conductive atomic force microscopy based setups. J. Electroceramics 39, 94–108 (2017)

    Article  Google Scholar 

  46. K.M. Lang et al., Conducting atomic force microscopy for nanoscale tunnel barrier characterization. Rev. Sci. Instrum. 75, 2726–2731 (2004)

    Article  ADS  Google Scholar 

  47. M.A. Lantz, S.J. O’Shea, M.E. Welland, Characterization of tips for conducting atomic force microscopy in ultrahigh vacuum. Rev. Sci. Instrum. 69, 1757–1764 (1998)

    Article  ADS  Google Scholar 

  48. R. O’Hayre, M. Lee, F.B. Prinz, Ionic and electronic impedance imaging using atomic force microscopy. J. Appl. Phys. 95, 8382–8392 (2004)

    Article  ADS  Google Scholar 

  49. S. Brivio et al., Low-power resistive switching in Au/NiO/Au nanowire arrays. Appl. Phys. Lett. 101, 223510 (2012)

    Article  ADS  Google Scholar 

  50. Lee, M., Lee, W. & Prinz, F. B. Geometric artefact suppressed surface potential measurements. Nanotechnology 17 (2006)

    Google Scholar 

  51. J.E. Stern, B.D. Terris, H.J. Mamin, D. Rugar, Deposition and imaging of localized charge on insulator surfaces using a force microscope. Appl. Phys. Lett. 53, 2717–2719 (1988)

    Article  ADS  Google Scholar 

  52. M. Nonnenmacher, M.P. Oboyle, H.K. Wickramasinghe, Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921–2923 (1991)

    Article  ADS  Google Scholar 

  53. S. Bagdzevicius, K. Maas, M. Boudard, M. Burriel, Interface-type resistive switching in perovskite materials. J. Electroceramics 39, 157–184 (2017)

    Article  Google Scholar 

  54. R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007)

    Article  ADS  Google Scholar 

  55. M.H. Lee et al., Surface redox induced bipolar switching of transition metal oxide films examined by scanning probe microscopy. Appl. Phys. A 102, 827–834 (2011)

    Article  ADS  Google Scholar 

  56. C. Yoshida, K. Kinoshita, T. Yamasaki, Y. Sugiyama, Direct observation of oxygen movement during resistance switching in NiO/Pt film. Appl. Phys. Lett. 93, 042106 (2008)

    Article  ADS  Google Scholar 

  57. M.H. Lee et al., Scanning probe based observation of bipolar resistive switching NiO films. Appl. Phys. Lett. 97, 062909 (2010)

    Article  ADS  Google Scholar 

  58. M. Kumar, T. Som, Structural defect-dependent resistive switching in Cu-O/Si studied by Kelvin probe force microscopy and conductive atomic force microscopy. Nanotechnology 26, 345702 (2015)

    Article  ADS  Google Scholar 

  59. Z. Fan et al., Resistive switching induced by charge trapping/detrapping: a unified mechanism for colossal electroresistance in certain Nb:SrTiO3-based heterojunctions. J. Mater. Chem. C 5, 7317–7327 (2017)

    Article  Google Scholar 

  60. S. Kremmer et al., Nanoscale morphological and electrical homogeneity of HfO2 and ZrO2 thin films studied by conducting atomic-force microscopy. J. Appl. Phys. 97, 074315 (2005)

    Article  ADS  Google Scholar 

  61. V. Iglesias et al., Dielectric breakdown in polycrystalline hafnium oxide gate dielectrics investigated by conductive atomic force microscopy. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 29, 01AB02 (2011)

    Google Scholar 

  62. S.J. O’Shea, R.M. Atta, M.P. Murrell, M.E. Welland, Conducting atomic force microscopy study of silicon dioxide breakdown. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 13, 1945–1952 (1995)

    Article  ADS  Google Scholar 

  63. A. Pradel, N. Frolet, M. Ramonda, A. Piarristeguy, M. Ribes, Bipolar resistance switching in chalcogenide materials. Phys. Status Solidi A 208, 2303–2308 (2011)

    Article  ADS  Google Scholar 

  64. J.Y. Son, Y.-H. Shin, Direct observation of conducting filaments on resistive switching of NiO thin films. Appl. Phys. Lett. 92, 222106 (2008)

    Article  ADS  Google Scholar 

  65. D. Deleruyelle et al., Direct observation at nanoscale of resistance switching in NiO layers by conductive-atomic force microscopy. Appl. Phys. Express 4, 051101 (2011)

    Article  ADS  Google Scholar 

  66. D. Deleruyelle et al., Ge2Sb2Te5 layer used as solid electrolyte in conductive-bridge memory devices fabricated on flexible substrate. Solid-State Electron. 79, 159–165 (2013)

    Article  ADS  Google Scholar 

  67. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312–320 (2006)

    Article  ADS  Google Scholar 

  68. S. Brivio, G. Tallarida, E. Cianci, S. Spiga, Formation and disruption of conductive filaments in a HfO2/TiN structure. Nanotechnology 25, 385705 (2014)

    Article  Google Scholar 

  69. M. Schie, M.P. Müller, M. Salinga, R. Waser, R.A. De Souza, Ion migration in crystalline and amorphous HfOX. J. Chem. Phys. 146, 094508 (2017)

    Article  ADS  Google Scholar 

  70. V. Iglesias et al., Degradation of polycrystalline HfO2-based gate dielectrics under nanoscale electrical stress. Appl. Phys. Lett. 99, 103510 (2011)

    Article  ADS  Google Scholar 

  71. U. Celano et al., Filament observation in metal-oxide resistive switching devices. Appl. Phys. Lett. 102, 121602 (2013)

    Article  ADS  Google Scholar 

  72. F. Nardi et al., Switching of nanosized filaments in NiO by conductive atomic force microscopy. J. Appl. Phys. 112, 064310 (2012)

    Article  ADS  Google Scholar 

  73. A. Ranjan et al., Analysis of quantum conductance, read disturb and switching statistics in HfO2 RRAM using conductive AFM. Microelectron. Reliab. 64, 172–178 (2016)

    Article  Google Scholar 

  74. Y. Yang et al., Probing nanoscale oxygen ion motion in memristive systems. Nat. Commun. 8, 15173 (2017)

    Article  ADS  Google Scholar 

  75. J.Y. Son, Y.-H. Shin, H. Kim, J.H. Cho, H. Jang, Kelvin probe force microscopy for conducting nanobits of NiO thin films. Nanotechnology 21, 215704 (2010)

    Article  ADS  Google Scholar 

  76. J. Frascaroli et al., Resistive switching in high-density nanodevices fabricated by block copolymer self-assembly. ACS Nano 9, 2518–2529 (2015)

    Article  Google Scholar 

  77. C. He et al., Multilevel resistive switching in planar graphene/SiO2 nanogap structures. ACS Nano 6, 4214–4221 (2012)

    Article  Google Scholar 

  78. U. Celano et al., Switching mechanism and reverse engineering of low-power Cu-based resistive switching devices. Nanoscale 5, 11187 (2013)

    Article  ADS  Google Scholar 

  79. U. Celano et al., Imaging the three-dimensional conductive channel in filamentary-based oxide resistive switching memory. Nano Lett. 15, 7970–7975 (2015)

    Article  ADS  Google Scholar 

  80. U. Celano et al., Nanoscopic structural rearrangements of the Cu-filament in conductive-bridge memories. Nanoscale 8, 13915–13923 (2016)

    Article  ADS  Google Scholar 

  81. J. Luria et al., Charge transport in CdTe solar cells revealed by conductive tomographic atomic force microscopy. Nat. Energy 1, 16150 (2016)

    Article  ADS  Google Scholar 

  82. M. Buckwell, L. Montesi, S. Hudziak, A. Mehonic, A. Kenyon, Conductance tomography of conductive filaments in intrinsic silicon-rich silica RRAM. Nanoscale 7, 18030–18035 (2015)

    Article  ADS  Google Scholar 

  83. J.E. Hudson, H.D. Abruña, Electrochemically controlled adhesion in atomic force spectroscopy. J. Am. Chem. Soc. 118, 6303–6304 (1996)

    Article  Google Scholar 

  84. K.M. Kim, C.S. Hwang, The conical shape filament growth model in unipolar resistance switching of TiO2 thin film. Appl. Phys. Lett. 94, 122109 (2009)

    Article  ADS  Google Scholar 

  85. J.J. Yang, I.H. Inoue, T. Mikolajick, C.S. Hwang, Metal oxide memories based on thermochemical and valence change mechanisms. MRS Bull. 37, 131–137 (2012)

    Article  Google Scholar 

  86. Y. Otsuka, Y. Naitoh, T. Matsumoto, T. Kawai, Point-contact current-imaging atomic force microscopy: Measurement of contact resistance between single-walled carbon nanotubes in a bundle. Appl. Phys. Lett. 82, 1944–1946 (2003)

    Article  ADS  Google Scholar 

  87. K. Oka, T. Yanagida, K. Nagashima, H. Tanaka, T. Kawai, Nonvolatile bipolar resistive memory switching in single crystalline NiO heterostructured nanowires. J. Am. Chem. Soc. 131, 3434–3435 (2009)

    Article  Google Scholar 

  88. D.O. Schmidt et al., Resistive Switching of Individual, Chemically Synthesized TiO2 Nanoparticles. Small 11, 6444–6456 (2015)

    Article  Google Scholar 

  89. M. Uenuma et al., Memristive nanoparticles formed using a biotemplate. RSC Adv. 3, 18044–18048 (2013)

    Article  Google Scholar 

  90. X.Y. Sun et al., A simple implement of submicron meter RRAM array based on porous SiO2 film with uniform and large pores. Vacuum 132, 119–122 (2016)

    Article  ADS  Google Scholar 

  91. S. Brivio et al., Bipolar resistive switching of Au/NiOx/Ni/Au heterostructure nanowires. Appl. Phys. Lett. 103, 153506 (2013)

    Article  ADS  Google Scholar 

  92. J.-M. Song, J.-S. Lee, Self-assembled nanostructured resistive switching memory devices fabricated by templated bottom-up growth. Sci. Rep. 6, 18967 (2016)

    Article  ADS  Google Scholar 

  93. U.-B. Han, J.-S. Lee, Bottom-up synthesis of ordered metal/oxide/metal nanodots on substrates for nanoscale resistive switching memory. Sci. Rep. 6, 25537 (2016)

    Article  ADS  Google Scholar 

  94. S.-H. Lyu, J.-S. Lee, Highly scalable resistive switching memory cells using pore-size-controlled nanoporous alumina templates. J. Mater. Chem. 22, 1852–1861 (2012)

    Article  Google Scholar 

  95. J. Frascaroli, G. Seguini, S. Spiga, M. Perego, L. Boarino, Fabrication of periodic arrays of metallic nanoparticles by block copolymer templates on HfO2 substrates. Nanotechnology 26, 215301 (2015)

    Article  ADS  Google Scholar 

  96. W.I. Park et al., Self-assembly-induced formation of high-density silicon oxide memristor nanostructures on graphene and metal electrodes. Nano Lett. 12, 1235–1240 (2012)

    Article  ADS  Google Scholar 

  97. J.Y. Ye et al., Nanoscale resistive switching and filamentary conduction in NiO thin films. Appl. Phys. Lett. 97, 132108 (2010)

    Article  ADS  Google Scholar 

  98. I. Tzouvadaki et al., Label-free ultrasensitive memristive aptasensor. Nano Lett. 16, 4472–4476 (2016)

    Article  ADS  Google Scholar 

  99. K. Nagashima et al., Cellulose nanofiber paper as an ultra flexible nonvolatile memory. Sci. Rep. 4, 5532 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Brivio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brivio, S., Frascaroli, J., Lee, M.H. (2019). Electrical AFM for the Analysis of Resistive Switching. In: Celano, U. (eds) Electrical Atomic Force Microscopy for Nanoelectronics. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-15612-1_7

Download citation

Publish with us

Policies and ethics