Advertisement

Diamond Probes Technology

  • Thomas HantschelEmail author
  • Thierry Conard
  • Jason Kilpatrick
  • Graham Cross
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

The superior properties of diamond being the hardest, best thermally conductive, high chemical inert and low friction material makes it very attractive for use as a tip material in scanning probe microscopy (SPM). The commercial availability of micromachined Si probes at the beginning of the 1990s triggered soon the interest and need for different tip coatings such as diamond which was first wanted for increasing the tip lifetime. Although first reports on diamond growth from the wafer phase were first reported in the 1980s, it took until the early 1990s before first applications using diamond grown by chemical vapor deposition (CVD) appeared on the market. Therefore, the development of fabrication processes for diamond tips, especially for electrically conductive ones, required also substantial efforts on the development of the diamond coating knowhow itself. As commercial probe companies considered diamond probes as specialty probes with a small market size in the early days, it explains well why most diamond tip innovations were established by universities and research centers.

Notes

Acknowledgements

Thierry Conard is acknowledged for TOFSIMS measurements. Menelaos Tsigkourakos is thanked for diamond seeding, growth and SSRM support. W. Kulisch († November 2018) is thanked for his pioneering diamond research and molded tip support in this work.

References

  1. 1.
    P. De Wolf, J. Snauwaert, L. Hellemans, T. Clarysse, W. Vandervorst, M. D’Olieslaeger, D. Quaeyhaegens, Lateral and vertical dopant profiling in semiconductors by atomic force microscopy using conducting tips. J. Vac. Sci. Technol., A 13, 1699–1704 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    P. Niedermann, W. Hänni, N. Blanc, R. Christoph, J. Burger, Chemical vapor deposition diamond for tips in nanoprobe experiments. J. Vac. Sci. Technol. A 14, 1233–1236 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    E. Oesterschulze, W. Scholz, C. Mihalcea, D. Albert, B. Sobisch, W. Kulisch, Fabrication of small diamond tips for scanning probe microscopy application. Appl. Phys. Lett. 70, 435 (1997).  https://doi.org/10.1063/1.118173ADSCrossRefGoogle Scholar
  4. 4.
    T. Hantschel, P. Niedermann, T. Trenkler, W. Vandervorst, Highly conductive diamond probes for scanning spreading resistance microscopy. Appl. Phys. Lett. 76, 1603–1605 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    T. Hantschel, C. Demeulemeester, P. Eyben, V. Schulz, O. Richard, H. Bender, W. Vandervorst, Conductive diamond tips with sub-nanometer electrical resolution for characterization of nanoelectronics device structures. Phys. Status Solidi A 206(9), 2077–2081 (2009).  https://doi.org/10.1002/pssa.200982212ADSCrossRefGoogle Scholar
  6. 6.
    A.N. Obraztsov, P.G. Kopylov, B.A. Loginov, M.A. Dolganov, R.R. Ismagilov, N.V. Savenko, Single crystal diamond tips for scanning probe microscopy. Rev. Sci. Instrum. 81, 013703 (2010).  https://doi.org/10.1063/1.3280182ADSCrossRefGoogle Scholar
  7. 7.
    N. Moldovan, Z. Dai, H. Zeng, J.A. Carlisle, T.D.B. Jacobs, V. Vahdat, D.S. Grierson, J. Liu, K.T. Turner, R.W. Carpick, Advances in manufacturing of molded tips for scanning probe microscopy. J. Microelectromech. Syst. 21, 431 (2012)CrossRefGoogle Scholar
  8. 8.
    T.R. Albrecht, S. Akamine, T.E. Carver, C.F. Quate, Microfabrication of cantilever styli for the atomic force microscope. J. Vat. Sci. Technol. A 8, 3386 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    O.A. Williams, O. Douheret, M. Daenen, K. Haenen, E. Osawa, M. Takahashi, Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chem. Phys. Lett. 445(4–6):255–258 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    M. Tsigkourakos, T. Hantschel, K. Arstila, W. Vandervorst, Diamond nano-particle seeding for tip moulding application. Diam. Relat. Mater. 35, 14–18 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    S. Heyer, W. Janssen, S. Turner, Y. Lu, W.S. Yeap, J. Verbeeck, K. Haenen, A. Krueger, Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles. ACS Nano 8, 5757–5764 (2014)CrossRefGoogle Scholar
  12. 12.
    M. Tsigkourakos, T. Hantschel, C. Bangerter, W. Vandervorst, Electrical probing of B-doped diamond seeds embedded into the interfacial layer of a conductive diamond film. Phys. Status Solidi A, 1–6 (2014).  https://doi.org/10.1002/pssa.201431215ADSCrossRefGoogle Scholar
  13. 13.
    A. Afandi, A. Howkins, I.W. Boyd, R.B. Jackman, Nanodiamonds for device applications: an investigation of the properties of boron-doped detonation nanodiamonds. Sci. Rep. 8, 3270 (2018)Google Scholar
  14. 14.
    J. Zimmer, T. Hantschel, G. Chandler, W. Vandervorst, M. Peralta, Boron doping in hot filament MCD and NCD diamond films. Mater. Res. Soc. Symp. Proc. 1203 (1203-J12-01) (2010)Google Scholar
  15. 15.
    J.G. Buijnsters, M. Tsigkourakos, T. Hantschel, F.O.V. Gomes, T. Nuytten, P. Favia, H. Bender, K. Arstila, J.-P. Celis, W. Vandervorst, Effect of boron doping on the wear behavior of the growth and nucleation surfaces of micro- and nanocrystalline diamond films. ACS Appl. Mater. Interfaces 8, 26381–26391 (2016).  https://doi.org/10.1021/acsami.6b08083CrossRefGoogle Scholar
  16. 16.
    J.P. Rasmussen, P.T. Tang, C. Sander, O. Hansen, P. Møller, M.J. Beeson, Fabrication of an all-metal atomic force microscope probe, in Proceedings of the Transducers 1997, Chicago, USA (June 1997), pp. 463–466Google Scholar
  17. 17.
    S. Koelling, T. Hantschel, W. Vandervorst, Conductive diamond probes with electroplated holder chips. Microelectron. Eng. 84, 1178–1181 (2007)CrossRefGoogle Scholar
  18. 18.
    T. Hantschel, S. Slesazeck, W. Vandervorst, The peel-off probe: a cost-effective probe for electrical atomic force microscopy. Proc. SPIE 4175, 50 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    T. Hantschel, U. Pape, S. Slesazeck, P. Niedermann, W. Vandervorst, Mounting of moulded AFM probes by soldering. Proc. SPIE 4175, 62 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    G. Gunther Reinhart, D. Jacob, M. Fouchier, Automated assembly of holder chips to AFM probes. Proc. SPIE 4568, Microrobotics and Microassembly III (8 Oct 2001).  https://doi.org/10.1117/12.444140
  21. 21.
    T. Hantschel, T. Trenkler, W. Vandervorst, A. Malave, D. Buechel, W. Kulisch, E. Oesterschulze, Tip-on-tip: a novel AFM tip configuration for the electrical characterization of semiconductor devices. Microelectron. Eng. 46, 113 (1999)CrossRefGoogle Scholar
  22. 22.
    S. Akamine, C.F. Quate, Low temperature thermal oxidation sharpening of microcast tips. J. Vac. Sci. Technol. B 10, 2307 (1992)CrossRefGoogle Scholar
  23. 23.
    T. Hantschel, T. Clarysse, A. Ajaykumar, F. Seidel, M. Tsigkourakos, T. Nuytten, K. Paredis, P. Eyben, B. Majeed, D.S. Tezcan, D.S. Tezcan, W. Vandervorst, Diamond nanoprobes for electrical probing of nanoelectronics device structures. Microelectron. Eng. 121, 19 (2014)CrossRefGoogle Scholar
  24. 24.
    T. Hantschel, M. Tsigkourakos, J. Kluge, T. Werner, L. Zha, K. Paredis, P. Eyben, T. Nuytten, Z. Xu, W. Vandervorst, Overcoated diamond tips for nanometer-scale semiconductor device characterization. Microelectron. Eng. 141, 1 (2015)CrossRefGoogle Scholar
  25. 25.
    E. Oesterschulze, A. Malave, U.F. Keyser, M. Paesler, R.J. Haug, Diamond cantilever with integrated tip for nanomachining. Diam. Relat. Mater. 11, 667–671 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    C. Beuret, T. Akiyama, U. Staufer, N.F. de Rooij, P. Niedermann, W. Hanni, Conical diamond tips realized by a double-molding process for high-resolution profilometry and atomic force microscopy applications. Appl. Phys. Lett. 76, 1621 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    P. Eyben, W. Vandervorst, D. Alvarez, M. Xu, M. Fouchier, in Scanning Probe Microscopy, vol. 31, ed. by S. Kalinin, A. Gruverman (Springer, New York, 2007)Google Scholar
  28. 28.
    M. Tsigkourakos, T. Hantschel, D.K. Simon, T. Nuytten, A.S. Verhulst, B. Douhard, W. Vandervorst, On the local conductivity of individual diamond seeds and their impact on the interfacial resistance of boron-doped diamond films. Carbon 79, 103 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Tsigkourakos, T. Hantschel, S.D. Janssens, K. Haenen, W. Vandervorst, Spin-seeding approach for diamond growth on large area silicon-wafer substrates. Phys. Status Solidi A 209, 1659 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    P. De Wolf, Ph.D. thesis, University of Leuven, Belgium, 1998, 120Google Scholar
  31. 31.
    Y.-S. Lo, N.D. Huefner, W.S. Chan, P. Dryden, B. Hagenhoff, T.P. Beebe, Organic and inorganic contamination on commercial AFM cantilevers. Langmuir 15, 6522 (1999)CrossRefGoogle Scholar
  32. 32.
    T. Hantschel, T. Trenkler, M. Xu, W. Vandervorst, The fabrication of a full metal AFM probe and its applications for Si and InP device analysis. Proc. of SPIE 3875, 20–31 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    P. Niedermann, R.F. Christoph, Components manufacturing method micromechanical having a diamond portion consisting at least of a tip, and micromechanical components having at least one diamond tip. FR:2739494:A1 (1997)Google Scholar
  34. 34.
    L. Li, I. Bayn, M. Lu, C.-Y. Nam, T. Schröder, A. Stein, N.C. Harris, D. Englund, Nanofabrication on unconventional substrates using transferred hard masks. Sci. Rep. 5, 7802 (2015)CrossRefGoogle Scholar
  35. 35.
    W. McKenzie, J. Pethica, G. Cross, A direct-write, resistless hard mask for rapid nanoscale patterning of diamond. Diam. Relat. Mater. 20, 707–710 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Martin, H. Kumar Wickramasinghe, Method for imaging sidewalls by atomic force microscopy. Appl. Phys. Lett. 64, 2498–2500 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    G. Dai, H. Wolff, F. Pohlenz, H.-U. Danzebrink, G. Wilkening, Atomic force probe for sidewall scanning of nano- and microstructures. Appl. Phys. Lett. 88, 171908 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    M. Shikida, K.-I. Nanbara, T. Koizumi, H. Sasaki, M. Odagaki, K. Sato, M. Ando, S. Furuta, K. Asaumi, in Transducers ’01 Eurosensors XV, ed. by E. Obermeier (Springer Berlin Heidelberg, 2001), pp. 648–651Google Scholar
  39. 39.
    M. Usman, J. Bocquel, J. Salfi, B. Voisin, A. Tankasala, R. Rahman, M.Y. Simmons, S. Rogge, L.C.L. Hollenberg, Spatial metrology of dopants in silicon with exact lattice site precision. Nat. Nanotechnol. 11, 763–768 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    L. Gross, N. Moll, F. Mohn, A. Curioni, G. Meyer, F. Hanke, M. Persson, High-resolution molecular orbital imaging using a p-wave STM tip. Phys. Rev. Lett. 107, 086101 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    D. Ebeling, Q. Zhong, S. Ahles, L. Chi, H.A. Wegner, A. Schirmeisen, Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy. Appl. Phys. Lett. 110, 183102 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    R.J. Colton, S.M. Baker, R.J. Driscoll, M.G. Youngquist, J.D. Baldeschwieler, W.J. Kaiser, Imaging graphite in air by scanning tunneling microscopy: role of the tip. J. Vac. Sci. Technol., A 6, 349–353 (1988)ADSCrossRefGoogle Scholar
  44. 44.
    O. Marti, M. Amrein, STM and SFM in Biology. (Academic Press, London, 2012)Google Scholar
  45. 45.
    D. Stiévenard, in Stress and Strain in Epitaxy, ed. by M. Hanbücken, J.-P. Deville (Elsevier, Amsterdam, 2001), pp. 243–286Google Scholar
  46. 46.
    T.-H. Kim, X.G. Zhang, D.M. Nicholson, B.M. Evans, N.S. Kulkarni, B. Radhakrishnan, E.A. Kenik, A.-P. Li, Large discrete resistance jump at grain boundary in copper nanowire. Nano Lett. 10, 3096–3100 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    A. Bietsch, B. Michel, Size and grain-boundary effects of a gold nanowire measured by conducting atomic force microscopy. Appl. Phys. Lett. 80, 3346–3348 (2002)ADSCrossRefGoogle Scholar
  48. 48.
  49. 49.
    ResiScope II AFM Electrical characterization, https://www.csinstruments.eu/resiscope
  50. 50.
  51. 51.
    A. Schulze, T. Hantschel, A. Dathe, P. Eyben, X. Ke, W. Vandervorst, Electrical tomography using atomic force microscopy and its application towards carbon nanotube-based interconnects. Nanotechnology 23, 305707 (2012)CrossRefGoogle Scholar
  52. 52.
    K. Atamanuk, J. Luria, B.D. Huey, Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics. Beilstein J. Nanotechnol. 9, 1802–1808 (2018)CrossRefGoogle Scholar
  53. 53.
    N. Nakagiri, T. Yamamoto, H. Sugimura, Y. Suzuki et al., Application of scanning capacitance microscopy to semiconductor devices (1997)Google Scholar
  54. 54.
    M.L. O’Malley, G.L. Timp, S.V. Moccio, J.P. Garno, R.N. Kleiman, Quantification of scanning capacitance microscopy imaging of the pn junction through electrical simulation. Appl. Phys. Lett. 74, 272–274 (1999)ADSCrossRefGoogle Scholar
  55. 55.
  56. 56.
    W. Vandervorst, M. Meuris, Method for resistance measurements on a semiconductor element with controlled probe pressure. 5369372 (1994)Google Scholar
  57. 57.
    P. De Wolf, Two-dimension carrier profiling of semiconductor structures with nm resolution (1998)Google Scholar
  58. 58.
    W. Hänni, N. Blanc, R. Christoph, J. Burger, Chemical vapor deposition diamond for tips in nanoprobe experiments. J. Vac. Sci. Technol. A Vac. Surf. Films (1996)Google Scholar
  59. 59.
    P. De Wolf, T. Clarysse, W. Vandervorst, L. Hellemans, P. Niedermann, W. Hänni, Cross-sectional nano-spreading resistance profiling. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 16, 355–361 (1998)ADSCrossRefGoogle Scholar
  60. 60.
    M. Fouchier, P. Eyben, D. Alvarez, N. Duhayon, M. Xu, S. Brongersma, J. Lisoni, W. Vandervorst, in Smart Sensors, Actuators, and MEMS, vol. 5116 (International Society for Optics and Photonics, 2003), pp. 607–617Google Scholar
  61. 61.
  62. 62.
    N.G. Orji, R.G. Dixson, 3D-AFM measurements for semiconductor structures and devices, in Metrology and Diagnostic Techniques for Nanoelectronics, vol. 109 (2017)Google Scholar
  63. 63.
    R. Courtland, Transistors could stop shrinking in 2021. IEEE Spectr. 53, 9–11 (2016)Google Scholar
  64. 64.
    J.P. Pelz, R.H. Koch, Tip-related artifacts in scanning tunneling potentiometry. Phys. Rev. B: Condens. Matter 41, 1212–1215 (1990)ADSCrossRefGoogle Scholar
  65. 65.
    D. Keller, Reconstruction of STM and AFM images distorted by finite-size tips. Surf. Sci. 253, 353–364 (1991)ADSCrossRefGoogle Scholar
  66. 66.
    J.S. Villarrubia, Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J. Res. Natl. Inst. Stand. Technol. 102, 425–454 (1997)CrossRefGoogle Scholar
  67. 67.
    G.J. Germann, G.M. McClelland, Y. Mitsuda, M. Buck, H. Seki, Diamond force microscope tips fabricated by chemical vapor deposition. Rev. Sci. Instrum. 63, 4053–4055 (1992)ADSCrossRefGoogle Scholar
  68. 68.
    M.C. Salvadori, W.W.R. Araújo, F.S. Teixeira, M. Cattani, A. Pasquarelli, E.M. Oks, I.G. Brown, Termination of diamond surfaces with hydrogen, oxygen and fluorine using a small, simple plasma gun. Diam. Relat. Mater. 19, 324–328 (2010)ADSCrossRefGoogle Scholar
  69. 69.
    S. Miyake, Tribological improvements of polished chemically vapor deposited diamond films by fluorination. Appl. Phys. Lett. 65, 1109–1111 (1994)ADSCrossRefGoogle Scholar
  70. 70.
  71. 71.
    D. Nečas, P. Klapetek, Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10, 181–188 (2012)Google Scholar
  72. 72.
    Y. Wang, D.W. van der Weide, Microfabrication and application of high-aspect-ratio silicon tips. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 23, 1582–1584 (2005)ADSCrossRefGoogle Scholar
  73. 73.
    H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley, Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147 (1996)ADSCrossRefGoogle Scholar
  74. 74.
    C.V. Nguyen, Q. Ye, M. Meyyappan, Carbon nanotube tips for scanning probe microscopy: fabrication and high aspect ratio nanometrology. Meas. Sci. Technol. 16, 2138 (2005)CrossRefGoogle Scholar
  75. 75.
    J. Foucher, P. Filippov, C. Penzkofer, B. Irmer, S.W. Schmidt, in SPIE Advanced Lithography, vol. 8681 (International Society for Optics and Photonics, 2013), pp. 86811I-86816Google Scholar
  76. 76.
    A.V. Sumant, D.S. Grierson, J.E. Gerbi, J. Birrell, U.D. Lanke, O. Auciello, J.A. Carlisle, R.W. Carpick, Toward the ultimate tribological interface: surface chemistry and nanotribology of ultrananocrystalline diamond. Adv. Mater. 17, 1039–1045 (2005)CrossRefGoogle Scholar
  77. 77.
    R. Schirhagl, K. Chang, M. Loretz, C.L. Degen, Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014)ADSCrossRefGoogle Scholar
  78. 78.
    C.L. Degen, Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008)ADSCrossRefGoogle Scholar
  79. 79.
    J.-P. Tetienne, A. Lombard, D.A. Simpson, C. Ritchie, J. Lu, P. Mulvaney, L.C.L. Hollenberg, Scanning nanospin ensemble microscope for nanoscale magnetic and thermal imaging. Nano Lett. 16, 326–333 (2016)ADSCrossRefGoogle Scholar
  80. 80.
    D. McCloskey, D. Fox, N. O’Hara, V. Usov, D. Scanlan, N. McEvoy, G.S. Duesberg, G.L.W. Cross, H.Z. Zhang, J.F. Donegan, Helium ion microscope generated nitrogen-vacancy centres in type Ib diamond. Appl. Phys. Lett. 104, 031109 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thomas Hantschel
    • 1
    Email author
  • Thierry Conard
    • 1
  • Jason Kilpatrick
    • 2
    • 3
  • Graham Cross
    • 3
    • 4
  1. 1.IMECLeuvenBelgium
  2. 2.Conway Institute of Biomedical and Biomolecular ResearchUniversity College DublinDublinIreland
  3. 3.Adama Innovations, CRANNTrinity College DublinDublinIreland
  4. 4.Trinity College, School of PhysicsDublin 2Ireland

Personalised recommendations