Skip to main content

Vortex-Assisted Liquid-Liquid Microextraction for Steroid Profile Analysis: Towards Sustainable Development Goals 2030

  • Chapter
  • First Online:
Universities as Living Labs for Sustainable Development

Part of the book series: World Sustainability Series ((WSUSE))

  • 1910 Accesses

Abstract

Prevention of waste is among of 12 principles in green chemistry. This study discusses about a simple, rapid and environmentally friendly method for the determination of endogenous steroid profile. A vortex assisted liquid-liquid microextraction (VALLME) as sample preparation followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) for the determination of steroid profile in urine was identified. The proposed method fulfilled the green chemistry principle and Goal 13 in Sustainable Development Goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnieszka G, Tomasz G (2011) Dispersive liquid-liquid microextraction. TrAC Trends Anal Chem 30:1382–1399

    Article  Google Scholar 

  • Agnieszka G, Migaszewski Z, Namiesnik J (2013) The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. TrAC Trends Anal Chem 50:78–84

    Article  Google Scholar 

  • Ahmadkhaniha R, Shafiee A, Rastkari N, Khoshayand MR, Kobarfard F (2010) Quantification of endogenous steroids in human urine by gas chromatography mass spectrometry using a surrogate analyte approach. J Chromatogr B 878:845–852

    Article  CAS  Google Scholar 

  • Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  • Arthur CL, Pawliszyn J (1990) Solid-phase microextraction with thermal desorption using silica optical fibers. Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  • Cawley AT, Trout GJ, Kazlauskas R, Howe CJ, George AV (2009) Carbon isotope ratio (δ13C) value of urinary steroids for doping control in sports. Steroids 74:379–385

    Article  CAS  Google Scholar 

  • Claudia LR, Shane C (2014) Drug abuse in athletes. Subst Abuse Rehabil 5:95–105

    Google Scholar 

  • Donike M, Rauth S, Wolansky A (1993) Reference ranges of urinary endogenous steroids determined by gas chromatography/mass spectrometry. In: Proceedings of the 10th cologne workshop on dope analysis. Sport und Buch Strauß, Cologne, pp 69–86

    Google Scholar 

  • Farré M, Pérez S, Gonçalves C, Alpendurada MF, Barceló D (2010) Green analytical chemistry in the determination of organic pollutants in the aquatic environment. TrAC Trends Anal Chem 29:1347–1362

    Article  Google Scholar 

  • GaÅ‚uszka A, Migaszewski Z, NamieÅ›nik J (2013) The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. Trends Anal Chem 50:78–84

    Article  Google Scholar 

  • Gyorgy V, Karoly V (2004) Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J Mass Spectrom 39:233–254

    Article  Google Scholar 

  • Hintikka L, Kuuranne T, Leinonen A, Thevis M, Schanzer W, Halket J, Cowan D, Grosse J, Hemmersbach P, Michel WF, Kostiainen R (2008) Liquid chromatographic–mass spectrometric analysis of glucuronide-conjugated anabolic steroid metabolites: method validation and interlaboratory comparison. J Mass Spectrom 43:965–973

    Article  CAS  Google Scholar 

  • Jeannot MA, Cantwell FF (1996) Solvent microextraction into a single drop. Anal Chem 68:2236–2240

    Article  CAS  Google Scholar 

  • Jia C, Zhu X, Wang J, Zhao E, He M, Chen L, Yu P (2010) Extraction of pesticides in water samples using vortex-assisted liquid-liquid microextraction. J Chromatogr A 1217:5868–5871

    Article  CAS  Google Scholar 

  • Joseph JD, Barry EB, Stephanie AS, William LM, Joseph JK (2014) Are sub-2 μm particles best for separating small molecules? an alternative. J Chromatogr A 1368:163–172

    Article  Google Scholar 

  • Kanayama G, James IH, Harrison GP (2010) Illicit anabolic-androgenic steroid use. Horm Behav 58:111–121

    Article  CAS  Google Scholar 

  • Keith LH, Liz UG, Jennifer LY (2007) Green analytical methodologies. Chem Rev 107(6):2695–2708

    Article  CAS  Google Scholar 

  • Kerkhof DH, de Boer D, Thijssen JHH, Maes RAA (2000) Evaluation of testosterone/epitestosterone ratio influential factors as determined in doping analysis. J Anal Toxicol 24:102–115

    Article  Google Scholar 

  • Koel M, Mihkel K (2006) IUPAC application of the principles of green chemistry in analytical chemistry. Pure Appl Chem 78:1993–2002

    Article  CAS  Google Scholar 

  • Kozlowska K, Polkowska Z, Przyjazny A, Namiesnik J (2003) Analytical procedures used in examining human urine samples. Pol J Environ Stud 12:503–521

    CAS  Google Scholar 

  • Kuuranne T, Kotiaho T, Pedersen-Bjergaard S, Rasmussen KE, Leinonen A, Westwood S, Kostiainen R (2003) Feasibility of a liquid-phase microextraction sample clean-up and liquid chromatographic/mass spectrometric screening method for selected anabolic steroid glucuronides in biological samples. J Mass Spectrom 38:16–26

    Article  CAS  Google Scholar 

  • Lacey JM, Minuti CZ, Magera MJ, Tauscher AL, Casetta B, McCann M, Lymp J, Si HH, Rinaldo P, Matern D (2004) Improved specificity of newborn screening for congenital adrenal hyperplasia by second tier steroid profiling using tandem mass spectrometry. Clin Chem 50:621–625

    Article  CAS  Google Scholar 

  • Leng G, Lui GB, Chen Y, Yin H, Dan DZ (2012) Vortex-assisted extraction combined with dispersive liquid-liquid microextraction for the determination of polycyclic aromatic hydrocarbons in sediment by high performance liquid chromatography. J Sep Sci 35:2796–2804

    Article  CAS  Google Scholar 

  • Marek T, Mariusz M, Agnieszka G, Namiesnik J (2015) Green chemistry metrics with special reference to green analytical chemistry. Molecules 20:10928–10946

    Article  Google Scholar 

  • Noppe H, Le Bizec B, Verheyden K, De Brabander HF (2008) Novel analytical methods for the determination of steroid hormones in edible matrices. Anal Chim Acta 611:1–16

    Article  CAS  Google Scholar 

  • Papadopoulou A, Román IP, Canals A, Tyrovola K, Psillakis E (2011) Fast screening of perfluorooctane sulfonate in water using vortex-assisted liquid–liquid microextraction coupled to liquid chromatography–mass spectrometry. Anal Chim Acta 691:56–61

    Article  CAS  Google Scholar 

  • Pedersen BS, Rasmussen KE (2008) Liquid-phase microextraction with porous hollow fibers, a miniaturized and highly flexible format for liquid-liquid extraction. J Chromatogr A 1184:132–142

    Article  Google Scholar 

  • Pena-Pereira F, Kloskowski A, NamieÅ›nik J (2015) Perspectives on the replacement of harmful organic solvents in analytical methodologies: a framework toward the implementation of a generation of ecofriendly alternatives. Green Chem 17:3687–3705

    Article  CAS  Google Scholar 

  • Peng X, Yu Y, Tang C, Tan J, Huang Q, Wang Z (2008) Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci Total Environ 397:158–166

    Article  CAS  Google Scholar 

  • Qiang N, Jing-Kang W, Yong-Li W, Shi W (2005) Solubility of 11α-hydroxy-16α, 17α-epoxyprogesterone in different solvents between 283 K and 323 K. J Chem Eng Data 50:989–992

    Article  Google Scholar 

  • Regal P, Vázquez BI, Franco CM, Cepeda A, Fente C (2009) Quantitative LC–MS/MS method for the sensitive and simultaneous determination of natural hormones in bovine serum. J Chromatogr B 877:2457–2464

    Article  CAS  Google Scholar 

  • Rezaee M, Yamini Y, Moradi M, Saleh A, Faraji M, Naeeni MH (2010) Supercritical fluid extraction combined with dispersive liquid–liquid microextraction as a sensitive and efficient sample preparation method for determination of organic compounds in solid samples. J Supercrit Fluids 55:161–168

    Article  CAS  Google Scholar 

  • Rummi DS (2017) The role of green chemistry in controlling environmental and ocean pollution. Int J Oceans Oceanogr 11:217–229

    Google Scholar 

  • Scarth JP, Kay J, Teale P, Akre C, Le Bizec B, De Brabander HF, Vanhaecke L, Van Ginke L, Points J (2012) A review of analytical strategies for the detection of ‘endogenous’ steroid abuse in food production. Drug Test Anal 1:40–49

    Article  Google Scholar 

  • Shaaban H (2016) New insights into liquid chromatography for more ecofriendly analysis of pharmaceuticals. Anal Bioanal Chem 408:6929–6944

    Article  CAS  Google Scholar 

  • Shaaban H, Gorecki T (2015) Current trends in green liquid chromatography for the analysis of pharmaceutically active compounds in the environmental water compartments. Talanta 132:739–752

    Article  CAS  Google Scholar 

  • Thevis M, Schanzer W (2005) Mass spectrometry in doping control analysis. Curr Org Chem 9:825–848

    Article  CAS  Google Scholar 

  • Torres Padrón ME, Cristina AO, Zoraida SF, José Juan SR (2014) Microextraction techniques coupled to liquid chromatography with mass spectrometry for the determination of organic micropollutants in environmental water samples. Molecules 19:10320–10349

    Article  Google Scholar 

  • UNESCO (2013) World social sciences report: changing global environments. UNESCO Publishing, Paris

    Google Scholar 

  • United Nation Development Programme—http://www.undp.org/content/undp/en/home/sustainable-development-goals.html. Accessed on 10 Feb 2018

  • United States Environmental Protection Agency (USEPA) (2017) Basics of green chemistry. https://www.epa.gov/greenchemistry/basics-green-chemistry. Accessed on 10 Feb 2018

  • WADA Prohibited List (2017). https://www.wada-ama.org/sites/default/files/resources/files/2016-09-29_-_wada_prohibited_list_2017_eng_final.pdf. Accessed on 1 Aug 2017

  • WADA Technical Document TDEAAS2016 Endogenous anabolic androgenic steroids measurement and reporting. https://www.wada-ama.org/sites/default/files/resources/files/wada-td2016eaas-eaas-measurement-and-reporting-en.pdf. Accessed on 1 Aug 2017

  • Wang SC, Oelze B, Schumacher A (2008) Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 16:3(7)

    Google Scholar 

  • World Bank (2010) World development report: development and climate change 2010. Word Bank, Washington

    Google Scholar 

  • Xue L, Zhang D, Wang T, Wang XM, Du X (2014) Dispersive liquid–liquid microextraction followed by high performance liquid chromatography for determination of phthalic esters in environmental water samples. Anal Methods 6:1121–1127

    Article  CAS  Google Scholar 

  • Yiantzi E, Psillakis E, Tyrovola K, Kalogerakis N (2010) Vortex-assisted liquid-liquid microextraction of octylphenol, nonylphenol and bisphenol-A. Talanta 80:2057–2062

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Normaliza Abdul Manaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manaf, N.A., Saad, B., Latiff, A.A., Sibly, S. (2020). Vortex-Assisted Liquid-Liquid Microextraction for Steroid Profile Analysis: Towards Sustainable Development Goals 2030. In: Leal Filho, W., et al. Universities as Living Labs for Sustainable Development. World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-3-030-15604-6_45

Download citation

Publish with us

Policies and ethics