Skip to main content

How to Manage Water Use for Sustainable Agriculture?

  • Chapter
  • First Online:

Abstract

Global fresh water resources are finite and non replenishable. The renewable fraction of fresh water constitutes less than 1% of the total fresh water pool. This chapter discusses, at length, several aspects of sustainable water use for agricultural production, vis-à-vis global needs for all other purposes, including domestic and societal needs, in short, for the very survival of human kind on planet earth with the implications on food security. The chapter also discusses several other aspects of the key element, Nitrogen, in sustainable agriculture, starting from the nitrogen cycle to global warming, contributed by the unbridled use of urea in green revolution leading to enormous nitrous oxide emission, on urea hydrolysis, leading to global warming.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aggarwal, P. K., Knopff, M. J., Cassman, K. G., & ten Berge, H. F. M. (1997). Simulating genotypic strategies for increasing rice yield potential in irrigated, tropical environments. Field Crops Research, 51, 5–17.

    Article  Google Scholar 

  • Becker, M., Asch, F., Maskey, S. L., Pande, K. R., Shah, S. C., & Shrestha, S. (2007). Effects of transition season management on soil N dynamics and systems N balances in rice-wheat rotations of Nepal. Field Crops Research, 103, 98–108.

    Article  Google Scholar 

  • Belder, P., Bouman, B. A. M., Spiertz, J. H. J., Peng, S., Castaneda, A. R., & Visperas, R. M. (2005). Crop performance, nitrogen and water use in flooded and aerobic rice. Plant and Soil, 273, 167–182.

    Article  CAS  Google Scholar 

  • Bennett, J. (2003). Opportunities for increasing water productivity of CGIAR for tolerance of water defects for using crops through plant breeding and molecular techniques. In J. W. Kijne, R. Barker, & D. Molden (Eds.), Water Productivity in Agriculture: Limits and Opportunities for Improvement (pp. 103–126). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Biemond, H., & Vos, J. (1992). Effects of nitrogen and the development and growth of the potato plant 2. The partitioning of dry matter, nitrogen and nitrate. Annals of Botany, 70, 37–45.

    Article  CAS  Google Scholar 

  • Bouman, B. A. M. (2007). A conceptual framework for the improvement of crop water productivity at different spatial scales. Agricultural Systems, 93, 43–60.

    Article  Google Scholar 

  • Bucks, D. A. (1995). Historical developments in micro irrigation. In F. R. Lamm (Ed.), Micro irrigation for a changing world (Proc. Fifth International Micro Irrigation Congress, April 2–6, 1996, Orlando, FL) (pp. 1–5). St Joseph: American Society of Agricultural Engineers.

    Google Scholar 

  • Burt, C. M., Howes, D. J., & Mutziger, A. (2001). Evaporation estimates for irrigated agriculture in California. In Paper presented at the irrigation association conference, November 4–6, 2001, San Antonio, TX

    Google Scholar 

  • Cabrera-Bosquet, L., Molero, G., Bort, J., Nogues, S., & Araus, J. L. (2007). The combined effect of constant water deficit and nitrogen supply on WUE, NUE and Δ13 C in durum wheat potted plants. The Annals of Applied Biology, 151, 277–289.

    Article  CAS  Google Scholar 

  • Campbell, C. A., Myers, R. J. K., & Curtin, D. (1995). Managing nitrogen for sustainable crop production. Fertility Research, 42, 277–296.

    Article  CAS  Google Scholar 

  • Cassman, K. G., Olk, D. C., & Dobermann, A. (1997). Scientific evidence of yield and productivity decline in irrigated rice systems of tropical Asia. International Rice Commission Newsletter, 46, 7–16.

    Google Scholar 

  • CGIAR. (2002). Challenge program for water and food. Washington, DC: Consultative Group for International Agricultural Research.

    Google Scholar 

  • Chapman, A. L., & Muchow, R. C. (1985). Nitrogen accumulated and partitioned at maturity by grain legumes under different water regimes in a semi-arid tropical environment. Field Crops Research, 11, 69–79.

    Article  Google Scholar 

  • De Sena, A.M. (1998). Satellites take away the guesswork out of irrigation. US Water News 15(8), August, 1–8.

    Google Scholar 

  • De Willigen, P., & van Noordwijk, M. (1987). Roots for plant production and nutrient use efficiency. Ph.D thesis Agricultural University, Wageningen, The Netherlands 282 p.

    Google Scholar 

  • Dobermann, A., & Cassman, K. G. (2002). Plant nutrient management for enhanced productivity in intensive grain production systems of the United States and Asia. Plant and Soil, 247, 153–175.

    Article  CAS  Google Scholar 

  • Edmeades, G. O., Cooper, M., Lafitte, R., Zinselmeir, C., Ribaut, J. M., Habben, J. E., Loffler, C., & Banziger, M. (2001). Abiotic stresses and staple crops. In J. Nosberger, H. H. Geiger, & P. C. Struik (Eds.), Crop science: Progress and prospects (pp. 137–154). Wallingford: CAB International.

    Google Scholar 

  • Eickhout, B., Bouwman, A. F., & van Zeijts, H. (2006). The role of nitrogen in world food production and environmental sustainability. Agriculture, Ecosystems & Environment, 116, 4–14.

    Article  CAS  Google Scholar 

  • Evans, L. T. (1998). Feeding the Ten Billion: Plants and population growth. Cambridge: Cambridge University Press.

    Google Scholar 

  • FAO. (1993). Prevention of water pollution by agriculture and related activities. Rome: Food and Agriculture Organization.

    Google Scholar 

  • FAO. (1996a). Control of water pollution from agriculture (Irrigation and Drainage Paper 55). Rome: Food and Agriculture Organization.

    Google Scholar 

  • FAO. (1996b). Energy for sustainable development and food security in Africa. Rome: Food and Agriculture Organization.

    Google Scholar 

  • FAO. (1997). Management of agricultural drainage water quality (Water Reports 13). Rome: Food and Agriculture Organization.

    Google Scholar 

  • FAO. (1998). Crops and drops: Making the best use of water for agriculture. Rome: Food and Agriculture Organization.

    Google Scholar 

  • FAO. (2000a). Agriculture Towards 2015/30 technical interim report, Global Perspectives Unit. Rome: Food and Agriculture Organization.

    Google Scholar 

  • FAO. (2000b). The State of Food and Agriculture: Lessons from the past 50 years. Rome: Food and Agriculture Organization.

    Google Scholar 

  • FAOSTAT. (1999). FAOSTAT Database. Rome: Food and Agriculture Organization.

    Google Scholar 

  • Ghassemi, F., Jackerman, A. J., & Nex, H. A. (1995). Salinization of land and water resources: Human causes, extent, management and case studies. Sydney: University of New South Wales Press.

    Google Scholar 

  • Goulding, K., Jarvis, S., & Whitmore, S. (2008). Optimizing nutrient management for farm systems. Philosophical Transactions of the Royal Society B, 363, 667–680.

    Article  CAS  Google Scholar 

  • Gupta, R. K., & Abrol, I. P. (2000). Salinity buildup and changes in the rice-wheat systems of the Indo-Gangetic plains. Experimental Agriculture, 37, 99–113.

    Google Scholar 

  • Hardin, G. (1968). Tragedy of the commons. Science, 162, 1243–1248.

    Article  CAS  Google Scholar 

  • Harris, H. C. (1991). Implications of climate variability. In H. C. Harris, P. J. M. Cooper, & M. Pela (Eds.), Soil and crop management for improved water use efficiency in Rainfed areas (Proceedings of International Workshop held in May 15–19, 1989) (pp. 179–198). Ankara/Turkey/Aleppo/Syria: International Center for Agricultural Research in Dry Areas s (ICARDA).

    Google Scholar 

  • Herridge, D. F., Peoples, M. B., & Boddey, R. M. (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 311, 1–18.

    Article  CAS  Google Scholar 

  • Hillel, D. (1994). Rivers of Eden (pp. 221–225). New York: Oxford University Press.

    Google Scholar 

  • Hobbs, P. R., Ken, S., & Raj, G. (2008). The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society B, 363, 543–555.

    Article  Google Scholar 

  • IFPRI. (1997a). Water resources in the twenty-first century: Challenges and implications for action. Washington, DC: International Food Policy Research Institute.

    Google Scholar 

  • IFPRI. (1997b). The world food situation: Recent developments, emerging issues and long term prospects (Vision 2020 Food Policy Report). Washington, DC: International Food Policy Research Institute.

    Google Scholar 

  • IPCC. (2001). In R. T. Watson (Ed.), Climate change 2001: Synthesis report. Cambridge: Cambridge University Press.

    Google Scholar 

  • Keating, B. A., & Carberry, P. S. (1993). Resource capture and use in intercropping-solar radiation. Field Crops Research, 34, 273–301.

    Article  Google Scholar 

  • Kichey, T., Hirel, B., Heumez, E., Dubois, F., & Le Gouis, J. (2007). In winter wheat (Triticum aestivum L.) post-anthesis nitrogen uptake and remobilization to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crops Research, 102, 22–32.

    Article  Google Scholar 

  • Kijne, J. W., Tuong, T. R., Bennett, J., Bowman, B., & Oweis, T. (2002). Ensuring food security via improvement in crop water productivity. In Background paper 1, challenge program for water and food. Washington, DC: Consultative Group for International Agricultural Research.

    Google Scholar 

  • Ladha, J. K., Pathak, H., Krupnik, T. J., Six, J., & van Kessel, C. (2005). Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Advances in Agronomy, 87, 85–156.

    Article  CAS  Google Scholar 

  • Lemaire, G., Oosterom, E., Sheehy, J., Jeuffroy, M. H., Massignam, A., & Rossato, L. (2007). Is crop N demand more closely related to dry matter accumulation or leaf area expansion during vegetative growth? Field Crops Research, 100, 91–106.

    Article  Google Scholar 

  • Lopez-Bellido, R. J., Castillo, J. E., & Lopez-Bellido, L. (2008). Comparative response of bread and durum wheat cultivars to nitrogen fertilizer in a rainfed Mediterranean environment: Soil nitrate and N uptake and efficiency. Nutrient Cycling in Agroecosystems, 80, 121–130.

    Article  Google Scholar 

  • Martre, P., Semenov, M. A., & Jamieson, P. D. (2007). Simulation analysis of physiological traits to improve yield, nitrogen use efficiency and grain protein concentration in wheat. In J. H. J. Spiertz, P. C. Struik, & H. H. Van Laar (Eds.), Scale and complexity in plant systems research: Gene-plant-crop relations (Gene-plant-crop relations, Wageningen UR Frontis Series) (pp. 181–201). Berlin: Springer.

    Chapter  Google Scholar 

  • Massey, R. E., Myers, D. B., Kitchen, N. R., & Sudduth, K. A. (2008). Profitability maps as an input for site-specific management decision making. Agronomy Journal, 100, 52–59.

    Article  Google Scholar 

  • McGinn, A. P. (1999). Safeguarding the health of oceans (Paper 145). Washington, DC: World Watch Institute.

    Google Scholar 

  • Molden, D. J. (1997). Accounting for water use and productivity (SWIM Paper 1). Colombo: International Irrigation Management Institute.

    Google Scholar 

  • Myers, N. (1997). Perverse Subsidies: Their Nature, Scales and Impacts. Chicago: McArthur Foundation.

    Google Scholar 

  • Nair, K. P. P. (1996). The buffering power of plant nutrients and effects on availability. Advances in Agronomy, 57, 237–287.

    Article  CAS  Google Scholar 

  • Nicholls, R. J., & Leatherman, S. P. (1995). Global sea levels rise. In K. M. Strzepek & J. B. Smith (Eds.), As climate changes: International impacts and implications (pp. 92–123). Cambridge: Cambridge University Press.

    Google Scholar 

  • NRC. (1999). Our common journey: A transition towards sustainability. Washington, DC: National Academy Press.

    Google Scholar 

  • Oldeman, L. R. (1994). The global extent of soil degradation. In D. J. Greenland & I. Szabolcs (Eds.), Soil resilience and sustainable land use (pp. 99–118). Wallingford: CAB International.

    Google Scholar 

  • Orr, A., Islam, A. S. M. N., & Barnes, G. (1991). Treadle Pump: Manual irrigation for small farmers in Bangladesh. Dhaka: Dinajpur Rural Services.

    Google Scholar 

  • Peng, S., & Bouman, B. A. M. (2007). Prospects for genetic improvement to increase lowland rice yields with less water and nitrogen. In J. H. J. Spiertz, P. C. Struik, & H. H. Van Laar (Eds.), Scale and complexity in plant systems research: Gene-Plant-Crop relations (pp. 251–266). Berlin: Springer.

    Chapter  Google Scholar 

  • Perry, C. J., Rock, M., & Seckler, D. (1997). Water as economic good: A solution or a problem. In Research report 14. Colombo: International Irrigation Management Institute.

    Google Scholar 

  • Pierce, F. P., & Nowak, P. (1999). Aspects of precision farming. Advances in Agronomy, 67, 1–85.

    Article  Google Scholar 

  • Postel, S. (1992). The last oasis: Facing water scarcity. London: Earthscan.

    Google Scholar 

  • Postel, S. (1996). Dividing the waters: Food security, ecosystem health and the new politics of scarcity. World watch paper 132. Washington, DC: World watch Institute.

    Google Scholar 

  • Postel, S. (1998). Water for food production: Will there be enough in 2025? Bio Science, 48, 629–637.

    Google Scholar 

  • Postel, S. (1999). Pillars of sand: Can the irrigation miracle last? New York: W.W.Norton.

    Google Scholar 

  • Postel, S. (2001). Drip irrigation for small farms: A new initiative to alleviate hunger and poverty. Water International, 26(1), 3–13.

    Article  Google Scholar 

  • Postel, S., & Carpenter, S. (1997). Freshwater ecosystem services. In G. C. Daily (Ed.), Nature’s services: Societal dependence on natural ecosystems (pp. 195–214). Washington, DC: Island Press.

    Google Scholar 

  • Raman, S. (1989). Adsorption of metoxuron and tebuthiuron on model clay-organo complexes. Toxicological and Environmental Chemistry, 24, 207–213.

    Article  CAS  Google Scholar 

  • Richards, R. A., Lopez-Castaneda, C., Gomez-Macpherson, H., & Condon, A. G. (1993). Improving the efficiency of water use by plant breeding and molecular biology Irrigation. Science, 14, 93–104.

    Google Scholar 

  • Rockstrom, J., Barron, J., & Fox, P. (2002). Water productivity in rainfed agriculture: Challenges and opportunities for smallholder farmers in drought-prone tropical agroecosystems. In J. K. Kijne, R. B. Barker, & D. Molden (Eds.), Water productivity in agriculture: Limits and opportunities for improvement (pp. 145–162). Wallingford: CAB International.

    Google Scholar 

  • Rosengrant, M. W., & Ringler, C. (1999). Impact on food security and rural development of reallocating water from agriculture. Washington, DC: International Food Policy Research Institute.

    Google Scholar 

  • Russell, G., Jarvis, P. G., & Monteith, J. L. (1989). Absorption of radiation by canopies and stand growth. In G. Russell (Ed.), Plant Canopy: Their growth, form and function (pp. 21–39). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Saito, K., Atlin, G. N., Linquist, B., Phanthaboon, K., Shiraiwa, T., & Horie, T. (2007). Performance of traditional and improved upland rice cultivars under nonfertilized and fertilized conditions in northern Laos. Crop Science, 47, 2473–2481.

    Article  CAS  Google Scholar 

  • Samonte, S. O. P. B., Wilson, L. T., Medley, J. C., Pinson, S. R. M., Clung, A. M., & Lales, J. S. (2006). Nitrogen utilization efficiency: Relationships with grain yield, grain protein and yield-related traits in rice. Agronomy Journal, 98, 168–176.

    Article  CAS  Google Scholar 

  • Seckler, D., Molden, D., & Barker, R. (1998). Water scarcity in the twenty-first century (Water Brief 1). Colombo: International Water Management Institute.

    Google Scholar 

  • Shah, T. (1993). Ground water markets and irrigation development. Bombay: Oxford University Press.

    Google Scholar 

  • Sinclair, T. R., Tanner, C. B., & Bennett, J. (1984). Water-use efficiency in crop production. BioScience, 34, 36–40.

    Article  Google Scholar 

  • Sivanappan, R. K. (1994). Prospects of micro irrigation in India. Irrigation and Drainage Systems, 8, 49–58.

    Article  Google Scholar 

  • Tuong, T. P. (1999). Productive water use in rice production: Opportunities and limitations. Journal of Crop Production, 2(2), 241–264.

    Article  Google Scholar 

  • Tyagi, N. K. (2002). Managing saline and alkaline water for higher productivity. In J. W. Kijne, R. Barker, & D. Molden (Eds.), Water productivity in agriculture: Limits and opportunities for improvement (pp. 69–87). Wallingfrord: CAB International.

    Google Scholar 

  • Umali, D. L. (1993). Irrigation induced salinity. Washington, DC: World Bank.

    Book  Google Scholar 

  • UNDP. (1995). The Aral in Crisis: United Nations development project, Tashkent, Russia. New York: United Nations Publications Division.

    Google Scholar 

  • UNEP. (2007). Reactive nitrogen in the environment. In Too much or too little of a good thing (Vol. 51). Paris: The Woods Hole Research Center, USA/UNEP DTIE Sustainable Consumption and Production Branch. ISBN 978 92 807 2783 8.

    Google Scholar 

  • Van Delden, A. (2001). Yield and growth components of potato and wheat under organic nitrogen management. Agronomy Journal, 93, 1370–1385.

    Article  Google Scholar 

  • Van Ginkel, M., Ortiz-Monasterio, I., Trethowan, R., & Hernandez, E. (2001). Methodology for selecting segregating populations for improved N-use efficiency in bread wheat. Euphytica, 119, 223–230.

    Article  Google Scholar 

  • WRI. (2000). World resources 2000–2001. People and ecosystems, the Fraying web of life. Washington, DC: World Resources Institute.

    Google Scholar 

  • WSSD. (2002). World summit for sustainable development. United Nations conference on environment and development, August 26 – September 4, Johannesburg, South Africa

    Google Scholar 

  • Yin, X., & Van Laar, H. H. (2005). Crop systems dynamics: An ecophysiological simulation model for genotype-by-environment interactions (p. 153). Wageningen: Wageningen Academic Publishers. ISBN 907 69 985 82.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nair, K.P. (2019). How to Manage Water Use for Sustainable Agriculture?. In: Intelligent Soil Management for Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-15530-8_18

Download citation

Publish with us

Policies and ethics