Skip to main content

Belowground Microbial Communities: Key Players for Soil and Environmental Sustainability

  • Chapter
  • First Online:
Unravelling the Soil Microbiome

Abstract

One of the key functions of soil microorganisms is to promote plant health and increase soil productivity. Some indigenous microorganisms of contaminated soil systems also have the capability to degrade the soil contaminants, and thus are frequently used in bioremediation purposes. Most of these microbes belong to the category of plant growth-promoting microorganisms, which perform various functions including providing nutrients to the plants, conferring disease resistance, and combating temperature, salinity, and other abiotic stresses. These microbes also support the growth of plants in degraded and contaminated soil systems, aiding phyto-remediation. In coming decades, food security and climate change are expected to be the most serious problems for the planet Earth. Plant growth-promoting microorganisms can provide a sustainable solution to these problems by increasing the production of crop plants, and reducing the use of chemical fertilizers and pesticides, thus decreasing agricultural pollution. The enormous diversity of soil microorganisms gives an excellent opportunity for exploring new plant growth-promoting rhizobacteria; however, only 1% of the total soil microorganisms are culturable in nature, so the majority of the promising strains remain unexplored. The advent of the novel ‘omic’ technologies provides an excellent opportunity to harness this potential of the belowground microbial world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Dubey RK (2015) Root system engineering: prospects and promises. Trends Plant Sci 20:408–409

    Article  CAS  Google Scholar 

  • Abhilash PC, Yunus M (2011) Can we use biomass produced from phytoremediation? Biomass Bioenergy 35:1371–1372

    Article  CAS  Google Scholar 

  • Abhilash PC, Srivastava P, Jamil S, Singh N (2011) Revisited Jatropha curcas as an oil plant of multiple benefits: critical research needs and prospects for the future. Environ Sci Pollut Res 18:127–131

    Article  CAS  Google Scholar 

  • Abhilash PC, Powell JR, Singh HB, Singh BK (2012) Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30:416–420

    Article  CAS  Google Scholar 

  • Abhilash PC, Dubey RK, Tripathi V, Srivastava P, Verma JP, Singh HB (2013b) Remediation and management of POPs-contaminated soils in a warming climate: challenges and perspectives. Environ Sci Pollut Res 20:5879–5885

    Article  CAS  Google Scholar 

  • Abhilash PC, Tripathi V, Dubey RK, Edrisi SA (2015) Coping with changes: adaptation of trees in a changing environment. Trends Plant Sci 20:137–138

    Article  CAS  Google Scholar 

  • Abhilash PC, Dubey RK, Tripathi V, Gupta VK, Singh HB (2016a) Plant growth-promoting microorganisms for environmental sustainability. Trends Biotechnol 34:847–850

    Article  CAS  Google Scholar 

  • Abhilash PC, Tripathi V, Edrisi SA, Dubey RK, Bakshi M, Dube PK, Ebbs SD (2016b) Sustainability of crop production from polluted lands. Energy Ecol Environ 1:54–65

    Article  Google Scholar 

  • Adams P, Lynch JM, De Leij FAAM (2007) Desorption of zinc by extracellularly produced metabolites of Trichoderma harzianum, Trichoderma reesei and Coriolus versicolor. J Appl Microbiol 103:2240–2247

    Article  CAS  Google Scholar 

  • Akinsemolu AA (2018) The role of microorganisms in achieving the sustainable development Goals. J Clean Prod 182:139–155

    Google Scholar 

  • Andreolli M, Lampis S, Poli M, Gullner G, Biró B, Vallini G (2013) Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons. Chemosphere 92:688–694

    Article  CAS  Google Scholar 

  • Anupama NB, Jogaiah S, Ito S, Amruthesh KN, Tran LP (2015) Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci 231:62–73

    Article  CAS  Google Scholar 

  • Babu AG, Shim J, Shea PJ, Oh BT (2014a) Penicillium aculeatum PDR-4 and Trichoderma sp. PDR-16 promote phytoremediation of mine tailing soil and bioenergy production with sorghum-sudan grass. Ecol Eng 69:186–191

    Article  Google Scholar 

  • Babu AG, Shim J, Bang KS, Shea PJ, Oh BT (2014b) Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manag 132:129–134

    Article  CAS  Google Scholar 

  • Bahadur A, Ahmad R, Afzal A, Feng H, Suthar V, Batool A, Mahmood-ul-Hassan M (2017) The influences of Cr-tolerant rhizobacteria in phytoremediation and attenuation of Cr (VI) stress in agronomic sunflower (Helianthus annuus L.). Chemosphere 179:112–119

    Article  CAS  Google Scholar 

  • Balseiro-Romero M, Gkorezis P, Kidd PS, Van Hamme J, Weyens N, Monterroso C, Vangronsveld J (2017) Use of plant growth promoting bacterial strains to improve Cytisus striatus and Lupinus luteus development for potential application in phytoremediation. Sci Total Environ 581:676–688

    Article  CAS  Google Scholar 

  • Bashan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation – a comprehensive evaluation. Appl Soil Ecol 61:171–189

    Article  Google Scholar 

  • Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci U S A 110:E1621–E1630

    Article  CAS  Google Scholar 

  • Begum MM, Sariah M, Puteh B, Zainal Abidin M, Rahman M, Siddiqui Y (2010) Field performance of bio-primed seeds to suppress Colletotrichum truncatum causing damping-off and seedling stand of soybean. Biol Control 53:18–23

    Article  Google Scholar 

  • Berta G, Copetta A, Gamalero E, Bona E, Cesaro P, Scarafoni A, D’Agostino G (2014b) Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth-promoting pseudomonad in the field. Mycorrhiza 24:161–170

    Article  Google Scholar 

  • Bertani I, Abbruscato P, Piffanelli P, Subramoni S, Venturi V (2016) Rice bacterial endophytes: isolation of a collection, identification of beneficial strains and microbiome analysis. https://doi.org/10.1111/1758-2229.12403

    CAS  Google Scholar 

  • Bogan BW, Lamar RT (1996) Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl Environ Microbiol 62:1597–1603

    CAS  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    Article  CAS  Google Scholar 

  • Bulgarelli D et al (2013) Structure and functions of the bacterial micro biota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  Google Scholar 

  • Chang P, Gerhardt KE, Huang XD, Yu XM, Glick BR, Gerwing PD, Greenberg BM (2014) Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils. Int J Phytoremediation 16:1133–1147

    Article  CAS  Google Scholar 

  • Couillerot O, Ramírez-Trujillo A, Walker V, von Felten A, Jansa J, Maurhofer M, Moënne-Loccoz Y (2013) Comparison of prominent Azospirillum strains in Azospirillum-Pseudomonas-Glomus consortia for promotion of maize growth. Appl Microbiol Biotechnol 97:4639–4649

    Article  CAS  Google Scholar 

  • Dang QL, Shin TS, Park MS, Choi YH, Choi GJ, Jang KS, Kim IS, Kim J-C (2014) Antimicrobial activities of novel mannosyl lipids isolated from the biocontrol fungus Simplicillium lamellicola BCP against phytopathogenic bacteria. J Agric Food Chem 62:3363–3370

    Article  CAS  Google Scholar 

  • Deng Z, Zhang R, Shi Y, Tan H, Cao L (2014) Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils. Environ Sci Pollut Res 21:2346–2357

    Article  CAS  Google Scholar 

  • Dhiman SS, Selvaraj C, Li J, Singh R, Zhao X, Kim D, Lee JK (2016) Phytoremediation of metal-contaminated soils by the hyperaccumulator canola (Brassica napus L.) and the use of its biomass for ethanol production. Fuel 183:107–114

    Article  CAS  Google Scholar 

  • di Gregorio S, Barbafieri M, Lampis S, Sanangelantoni AM, Tassi E, Vallini G (2006) Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63:293–299

    Article  CAS  Google Scholar 

  • Dubey RK, Tripathi V, Singh N, Abhilash PC (2014) Phytoextraction and dissipation of lindane by Spinacia oleracea L. Ecotoxicol Environ Saf 109:22–26

    Article  CAS  Google Scholar 

  • Dubey RK, Tripathi V, Abhilash PC (2015) Book Review: Principles of plant-microbe interactions: microbes for sustainable agriculture. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00986

  • Dubey PK, Singh GS, Abhilash PC (2016a) Agriculture in a changing climate. J Clean Prod 113:1046–1047

    Article  Google Scholar 

  • Dubey RK, Tripathi V, Edrisi SA, Bakshi M, Dubey PK, Singh A, Verma JP, Singh A, Sarma BK, Raskhit A, Singh DP, Singh HB, Abhilash PC (2017) Role of plant growth promoting microorganisms in sustainable agriculture and environmental remediation. In: Singh HB, Sharma B, Kesawani C (eds) Advances in PGPR research. CABI Press. https://doi.org/10.1079/9781786390325.0000

    Google Scholar 

  • Edrisi SA, Abhilash PC (2016) Exploring marginal and degraded lands for biomass and bioenergy production: an Indian scenario. Renew Sust Energ Rev 54:1537–1551

    Article  Google Scholar 

  • Edrisi SA, Dubey RK, Tripathi V, Bakshi M, Srivastava P, Jamil S, Abhilash PC (2015) Jatropha curcas L.: a crucified plant waiting for resurgence. Renew Sust Energ Rev 41:855–862

    Article  Google Scholar 

  • El-Howeity MA, Asfour MM (2012) Response of some varieties of canola plant (Brassica napus L.) cultivated in a newly reclaimed desert to plant growth promoting rhizobacteria and mineral nitrogen fertilizer. Ann Agric Sci 57:129–136

    Article  Google Scholar 

  • Ferrigo D, Raiola A, Rasera R, Causin R (2014) Trichoderma harzianum seed treatment controls Fusarium verticillioides colonization and fumonisin contamination in maize under field conditions. Crop Prot 65:51–56

    Article  Google Scholar 

  • Figueroa Lopez AM, Cordero Ramirez JD, Martinez Alvarez JC, Lopez Meyer M, Lizarraga Sanchez GJ, Felix Gastelum R, Castro-Martinez C, Maldonado Mendoza IE (2016) Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. Springerplus 5:330

    Google Scholar 

  • Gao X, Gong Y, Huo Y, Han Q, Kang Z, Huang L (2015) Endophytic Bacillus subtilis strain E1R-J is a promising biocontrol agent for wheat powdery mildew. Biomed Res Int 2015. https://doi.org/10.1155/2015/462645

    Google Scholar 

  • Gelfand I, Sahajpal R, Zhang X, Izaurralde RC, Gross KL, Robertson GP (2013) Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493:514–517

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. Article ID 963401, 15 pages, 2012. https://doi.org/10.6064/2012/963401.

    Article  CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169: 30–39

    Article  CAS  Google Scholar 

  • Graham-Rowe D (2011) Beyond food versus fuel. Nature 474:S6–S8

    Article  CAS  Google Scholar 

  • Harfouche A, Meilan R, Altman A (2011) Tree genetic engineering and applications to sustainable forestry and biomass production. Trends Biotechnol 29:9–17

    Article  CAS  Google Scholar 

  • Hernández-León R, Rojas-Solís D, Contreras-Pérez M, Orozco-Mosqueda MC, Macías-Rodríguez LI, Reyes-de la Cruz H, Valencia-Cantero E, Santoyo G (2015) Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescensstrains. Biol Control 81:83–92

    Article  CAS  Google Scholar 

  • Hou J, Liu W, Wang B, Wang Q, Luo Y, Franks AE (2015) PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere 138:592–598

    Article  CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) Responses of three grass species to creosote during phytoremediation. Environ Pollut 130:453–463

    Article  CAS  Google Scholar 

  • Huang CJ, Tsay JF, Chang SY, Yang HP, Wu WS, Chen CY (2012) Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Manag Sci 68:1306–1310

    Article  CAS  Google Scholar 

  • Hussa EA, Goodrich-Blair H (2013) It takes a village: ecological and fitness impacts of multipartite mutualism. Annu Rev Microbiol 67:161–178

    Article  CAS  Google Scholar 

  • Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169:83–98

    Article  CAS  Google Scholar 

  • Kakar KU, Duan Y-P, Nawaz Z, Sun G, Almoneafy AA, Hassan MA, Elshakh A, Li B, Xie G-L (2014) A novel rhizobacterium Bk7 for biological control of brown sheath rot of rice caused by Pseudomonas fuscovaginae and its mode of action. Eur J Plant Pathol 138:819–834

    Article  Google Scholar 

  • Khaksar G, Treesubsuntorn C, Thiravetyan P (2016) Effect of endophytic Bacillus cereus ERBP inoculation into non-native host: potentials and challenges for airborne formaldehyde removal. Plant Physiol Biochem 107:326–336

    Article  CAS  Google Scholar 

  • Khan Z, Roman D, Kintz T, delas Alas M, Yap R, Doty S (2014) Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida, PD1. Environ Sci Technol 48:12221–12228

    Article  CAS  Google Scholar 

  • Khindaria A, Grover TA, Aust SD (1995) Reductive dehalogenation of aliphatic halocarbons by lignin peroxidase of Phanerochaete chrysosporium. Environ Sci Technol 29:719–725

    Article  CAS  Google Scholar 

  • Kim HJ, Choi HS, Yang SY, Kim IS, Yamaguchi T, Sohng JK, Park SK, Kim JC, Lee CH, Gardener BM et al (2014) Both extracellular chitinase and a new cyclic lipopeptide, chromobactomycin, contribute to the biocontrol activity of Chromobacterium sp. C61. Mol Plant Pathol 15:122–132

    Article  CAS  Google Scholar 

  • Ko CH, Yu FC, Chang FC, Yang BY, Chen WH, Hwang WS, Tu TC (2017) Bioethanol production from recovered napier grass with heavy metals. J Environ Manag 203:1005–1010

    Article  CAS  Google Scholar 

  • Krey T, Vassilev N, Baum C, Eichler-Löbermann B (2013) Effects of long-term phosphorus application and plant-growth promoting rhizobacteria on maize phosphorus nutrition under field conditions. Eur J Soil Biol 55:124–130

    Article  CAS  Google Scholar 

  • Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    Article  CAS  Google Scholar 

  • Lapidot D, Dror R, Vered E, Mishli O, Levy D, Helman Y (2014) Disease protection and growth promotion of potatoes (Solanum tuberosum L.) by Paenibacillus dendritiformis. Plant Pathol. https://doi.org/10.1111/ppa.1228

  • Lehman RM, Cambardella CA, Stott DE, Acosta-Martinez V, Manter DK, Buyer JS, Maul JE, Smith JL, Collins HP, Halvorson JP (2015) Understanding and enhancing soil biological health: the solution for reversing soil degradation. Sustainability 7:988–1027

    Article  CAS  Google Scholar 

  • Li H-Y et al (2012) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18

    Google Scholar 

  • Liu W, Sun J, Ding L, Luo Y, Chen M, Tang C (2013) Rhizobacteria (Pseudomonas sp. SB) assist phytoremediation of oily-sludge-contaminated soil by tall fescue (Testuca arundinacea L.). Plant Soil 371:533–542

    Article  CAS  Google Scholar 

  • Lucas JA, García-Cristobal J, Bonilla A, Ramos B, Gutierrez-Mañero J (2014) Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice seedlings. Plant Physiol Biochem 82:44–53

    Article  CAS  Google Scholar 

  • Luo C, Zhou H, Wang X, Zhang R, Xiang Y (2014) Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-014-6195-4

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 75:719–725

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. J Hazard Mater 320:36–44

    Article  CAS  Google Scholar 

  • McGenity TJ, Crombie AT, Murrell JC (2018) Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth. ISME J 12:931–941

    Article  CAS  Google Scholar 

  • McKenney DW, Yemshanov D, Fraleigh S, Allen D, Preto F (2011) An economic assessment of the use of short-rotation coppice woody biomass to heat greenhouses in southern Canada. Biomass Bioenergy 35:374–384

    Article  Google Scholar 

  • Meers E, Van Slyckena S, Adriaensenb K, Ruttensb A, Vangronsveld J, Du Laing G, Witters N, Thewysb T, Tack FM (2010) The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78:35–41

    Article  CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashra M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    Article  CAS  Google Scholar 

  • Neiverth A, Delai S, Garcia DM, Saatkamp K, Souza EM, Pedrosa FO, Guimarães VF, Santos MF, Vendruscolo ECG, Costa ACT (2014) Performance of different wheat genotypes inoculated with the plant growth promoting bacterium Herbaspirillum seropedicae. Eur J Soil Biol 64:1–5. https://doi.org/10.1016/j.ejsobi.2014.07.001

    Article  Google Scholar 

  • Novotný Č, Vyas BRM, Erbanova P, Kubatova A, Šašek V (1997) Removal of PCBs by various white rot fungi in liquid cultures. Folia Microbiol 42:136–140

    Article  Google Scholar 

  • NRSC I (2011) Wastelands Atlas of India 2011: change analysis based on temporal satellite data of 2005–06 and 2008–09

    Google Scholar 

  • Pérez-Montaño F, Alías-Villegas C, Bellogín RA, del Cerro P, Espuny MR, Jiménez-Guerrero I, López-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  Google Scholar 

  • Potshangbam M, Devi SI, Sahoo D, Strobel GA (2017) Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00325

  • Priya H, Prasanna R, Ramakrishnan B, Bidyarani N, Babu S, Thapa S, Renuka N (2015) Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice. Microbiol Res. https://doi.org/10.1016/j.micres.2014.12.011

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA et al (2006) The path forward for biofuels and biomaterials. Science 311:484e9

    Article  CAS  Google Scholar 

  • Rajkumar M, Nagendran R, Lee KJ, Lee WH, Kim SZ (2006) Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere 62:741–748

    Article  CAS  Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Appl Soil Ecol 73:87–96

    Article  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Singh Y, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Rillig MC, Lehmann A, Lehmann J, Camenzind T, Rauh C (2018) Soil biodiversity effects from field to fork. Trends Plant Sci 23:17–24

    Article  CAS  Google Scholar 

  • Salam JA, Hatha MA, Das N (2017) Microbial-enhanced lindane removal by sugarcane (Saccharum officinarum) in doped soil-applications in phytoremediation and bioaugmentation. J Environ Manag 193:394–399

    Article  CAS  Google Scholar 

  • Santoyo G, Moreno-Hagelsiebb G, Orozco-Mosquedac MC, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  Google Scholar 

  • Sarathambal C, Ilamurugu K, Balachandar D, Chinnadurai C, Gharde Y (2015) Characterization and crop production efficiency of diazotrophic isolates from the rhizosphere of semi-arid tropical grasses of India. Appl Soil Ecol 87:1–10

    Article  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23:25–41

    Article  CAS  Google Scholar 

  • Saxena A, Raghuwanshi R, Singh HB (2015) Trichoderma species mediated differential tolerance against biotic stress of phytopathogens in Cicer arietinum L. J Basic Microbiol 55:195–206

    Article  CAS  Google Scholar 

  • Segata N, Boernigen D, Tickle TL, Morgan XC, Garrett WS, Huttenhower C (2013) Computational meta’omics for microbial community studies. Mol Syst Biol 9:666. https://doi.org/10.1038/msb.2013.22

    Article  Google Scholar 

  • Sheng X, Sun L, Huang Z, He L, Zhang W, Chen Z (2012) Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria: implications for energy plant biomass production and phytoremediation. J Environ Manag 103:58–64

    Article  CAS  Google Scholar 

  • Singh BK, Campbell CD, Sorenson SJ, Zhou J (2009) Soil genomics. Nat Rev Microbiol 7:756. https://doi.org/10.1038/nrmicro2119-c1

    Article  CAS  Google Scholar 

  • Singh DP, Prabha R, Yandigeri MS, Arora DK (2011) Cyanobacteria-mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance. Antonie Van Leeuwenhoek 100:557–568

    Article  CAS  Google Scholar 

  • Singh A, Dubey PK, Chaurasiya R, Mathur N, Kumar G, Bharati S, Abhilash PC (2018) Indian spinach: an underutilized perennial leafy vegetable for nutritional security in developing world. Energ Ecol Environ. https://doi.org/10.1007/s40974-018-0091-1

    Article  Google Scholar 

  • Sinha S, Mukherjee SK (2008) Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56:55–60

    Article  CAS  Google Scholar 

  • Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K, Murooka Y (2003) Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69:1791–1796

    Article  Google Scholar 

  • Suominen L, Jussila MM, Mäkeläinen K, Romantschuk M, Lindström K (2000) Evaluation of the Galega–Rhizobium galegae system for the bioremediation of oil-contaminated soil. Environ Pollut 107:239–244

    Article  CAS  Google Scholar 

  • Szilagyi-Zecchin VJ, Ikeda AC, Hungria M, Adamoski D, Kava-Cordeiro V, Glienke C, Galli-Terasawa LV (2014) Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express 4:26. https://doi.org/10.1186/s13568-014-0026-y

    Article  CAS  Google Scholar 

  • Tao A, Pang F, Huang S, Yu G, Li B, Wang T (2014) Characterisation of endophytic Bacillus thuringiensis strains isolated from wheat plants as biocontrol agents against wheat flag smut. Biocontrol Sci Tech 24:901–924

    Article  Google Scholar 

  • Tara N, Afzal M, Ansari TM, Tahseen R, Iqbal S, Khan QM (2014) Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil. Int J Phytoremediation 16:1268–1277

    Article  CAS  Google Scholar 

  • Teixeira C, Almeida CMR, da Silva MN, Bordalo AA, Mucha AP (2014) Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium. Sci Total Environ 493:757–765

    Article  CAS  Google Scholar 

  • Tour JM, Kittrell C, Colvin V (2010) Green carbon as a bridge to renewable energy. Nat Mater 9:871–874

    Article  CAS  Google Scholar 

  • Tripathi V, Dubey RK, Edrisi SA, Narain K, Singh HB, Singh N, Abhilash PC (2014a) Towards the ecological profiling of a pesticide contaminated soil site for remediation and management. Ecol Eng 71:318–325

    Article  Google Scholar 

  • Tripathi V, Dubey RK, Singh HB, Singh N, Abhilash PC (2014b) Is Vigna radiata (L.) R Wilczek a suitable crop for Lindane contaminated soil? Ecol Eng 73:219–223

    Article  Google Scholar 

  • Tripathi V, Abhilash PC, Singh HB, Singh N, Patra DD (2015a) Effect of temperature variation on lindane dissipation and microbial activity in soil. Ecol Eng 79:54–59

    Article  Google Scholar 

  • Tripathi V, Fraceto LF, Abhilash PC (2015b) Sustainable clean-up technologies for soils contaminated with multiple pollutants: plant-microbe-pollutant and climate nexus. Ecol Eng 82:330–335

    Article  Google Scholar 

  • Tripathi V, Edrisi SA, Abhilash PC (2016a) Towards the coupling of phytoremediation with bioenergy production. Renew Sust Energ Rev 57:1386–1389

    Article  CAS  Google Scholar 

  • Tripathi V, Edrisi SA, O’Donovan A, Gupta VK, Abhilash PC (2016b) Bioremediation for fueling the biobased economy. Trends Biotechnol 34:775–777

    Article  CAS  Google Scholar 

  • Tripathi V, Edrisi SA, Chen B, Gupta VK, Abhilash PC, Vilu R, Gathergood N (2017) Biotechnological advances for restoring degraded land for sustainable development. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2017.05.001

    Article  CAS  Google Scholar 

  • Trivedi P, Anderson IC, Singh BK (2013) Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol 21:641–651

    Article  CAS  Google Scholar 

  • Wang B, Wang Q, Liu W, Liu X, Hou J, Teng Y, Christie P (2017) Biosurfactant-producing microorganism Pseudomonas sp. SB assists the phytoremediation of DDT-contaminated soil by two grass species. Chemosphere 182:137–142

    Article  CAS  Google Scholar 

  • Witters N, Mendelsohn RO, Van Slyckenc S, Weyens N, Schreurs E, Meers E, Tack F, Carleer R, Vangronsveld J (2012) Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: energy production and carbon dioxide abatement. Biomass Bioenergy 39:454–469

    Article  CAS  Google Scholar 

  • Xie X, Liao M, Yang J, Chai J, Fang S, Wang R (2012) Influence of root-exudates concentration on pyrene degradation and soil microbial characteristics in pyrene contaminated soil. Chemosphere 88:1190–1195

    Article  CAS  Google Scholar 

  • Xun F, Xie B, Liu S, Guo C (2015) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res 22:598–608

    Article  CAS  Google Scholar 

  • Yang M-M, Wen S-S, Mavrodi DV, Mavrodi OV, von Wettstein D, Thomashow LS, Guo J-H, Weller DM (2014) Biological control of wheat root diseases by the CLP-producing strain Pseudomonas fluorescens HC1-07. Phytopathology 104:248–256

    Article  CAS  Google Scholar 

  • Zeriouh H, de Vicente A, Pérez-García A, Romero D (2014) Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environ Microbiol 16:2196–2211

    Article  CAS  Google Scholar 

  • Zaman M, Toth I (2013) Immunostimulation by synthetic lipopeptides based vaccine candidates: structure-activity relationships. Front Immunol 4:1–12

    Article  CAS  Google Scholar 

  • Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, Firestone MK (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3:470–480

    Article  CAS  Google Scholar 

  • Zhang Q, Zhang J, Yang L, Zhang L, Jiang D, Chen W, Li G (2014) Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biol Control 72:98–108

    Article  Google Scholar 

  • Zhao P, Quan C, Wang Y, Wang J, Fan S (2013) Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. J Basic Microbiol. https://doi.org/10.1002/jobm.201200414

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubey, R.K. et al. (2020). Belowground Microbial Communities: Key Players for Soil and Environmental Sustainability. In: Unravelling the Soil Microbiome. SpringerBriefs in Environmental Science. Springer, Cham. https://doi.org/10.1007/978-3-030-15516-2_2

Download citation

Publish with us

Policies and ethics