Three-Dimensional Adults Gait Pattern – Reference Data for Healthy Adults Aged Between 20 and 24

  • Katarzyna Jochymczyk-WoźniakEmail author
  • Katarzyna Nowakowska
  • Robert Michnik
  • Marek Gzik
  • Dominik Kowalczykowski
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 925)


The research aimed to identify the standards of gait-related kinematic quantities and normalcy indices of the Gillette Gait Index related to adults aged between 20 and 24. In addition, it was decided to compare the standard obtained for adults with the gait standard of children. The study group consisted of 32 healthy adults aged 20 to 24. The tests were performed using the BTS Smart system. The original applications developed in the Matlab environment for all of the children subjected to the tests enabled the identification of the Gillette Gait Index (GGI). Detailed analysis involved a set of sixteen variables describing gait kinematics; the above-named variables are used when creating the GGI. Within the framework of this work, a comparative statistical analysis of 16 parameters constituting the GGI was performed between the groups of adults and children. This analysis showed statistically significant differences for 9 variables. The results obtained in this work indicate that there is the necessity of using adequate gait norm for a particular age. The obtained parameter values of the GGI were also compared with results obtained by other authors. The identified trajectories of the kinematic quantities can be used as normative in relation to adult patients.


Gait analysis Normal pattern Gillette Gait Index Kinematics 


  1. 1.
    Assi, A., Ghanem, I., Lavaste, F., Skalli, W.: Gait analysis in children and uncertainty assessment for Davis protocol and Gillette Gait Index. Gait Posture 30(1), 22–26 (2009)CrossRefGoogle Scholar
  2. 2.
    Baker, R., McGinley, J.L., Schwartz, M.H., Beynon, S., Rozumalski, A., Graham, H.K., Tirosh, O.: The gait profile score and movement analysis profile. Gait Posture 30(3), 265–269 (2009)CrossRefGoogle Scholar
  3. 3.
    Cretual, A., Bervet, K., Ballaz, L.: Gillette Gait Index in adults. Gait Posture 32(3), 307–310 (2010)CrossRefGoogle Scholar
  4. 4.
    Dusing, S., Thorpe, D.: A normative sample of temporal and spatial gait parameters in children using the GAITRite electronic walkay. Gait Posture 25(1), 135–139 (2007)CrossRefGoogle Scholar
  5. 5.
    Ganley, K.J., Powers, C.M.: Gait kinematics and kinetics of 7-year-old children: a comparison to adults using age-specific anthropometric data. Gait Posture 21(2), 141–145 (2005)CrossRefGoogle Scholar
  6. 6.
    Hillman, S.J., Stansfield, B.W., Richardson, A.M., Robb, J.E.: Development of temporal and distance parameters of gait in normal children. Gait Posture 29(1), 81–85 (2009)CrossRefGoogle Scholar
  7. 7.
    Holm, I., Teter, A.T., Fredriksen, P.M., Vollestad, N.: A normative sample of gait and hopping on one leg parameters in children 7–12 years of age. Gait Posture 29(2), 317–321 (2009)CrossRefGoogle Scholar
  8. 8.
    Jochymczyk-Woźniak, K., Nowakowska, K., Michnik, R., Konopelska, A., Luszawski, J., Mandera, M.: Assessment of locomotor functions of patients suffering from cerebral palsy qualified to treat by different methods. In: Gzik, M., Tkacz, E., Paszenda, Z., Piętka, E. (eds.) Innovation in biomedical engineering. Advances in Intelligent System and Computing, vol. 623, pp. 225–233. Springer, Cham (2018)CrossRefGoogle Scholar
  9. 9.
    Jochymczyk-Woźniak, K., Nowakowska, K., Michnik, R., Gzik, M., Wodarski, P., Gorwa, J., Janoska, P.: Three-dimensional children gait pattern - reference data for healthy children aged between 7 and 17. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Medicine 5th International Conference. Advances in Intelligent System and Computing, vol. 762, pp. 589–601. Springer, Cham (2018)Google Scholar
  10. 10.
    McMulkin, M.L., MacWilliams, B.A.: Application of the Gillette Gait Index, Gait Deviation Index and Gait Profile Score to multiple clinical pediatric populations. Gait Posture 41(2), 608–612 (2015)CrossRefGoogle Scholar
  11. 11.
    Michnik, R., Jochymczyk-Woźniak, K., Kopyta, I. (eds.): Use of engineering methods in gait analysis of children with cerebral palsy. Wyd. Politechniki Śląskiej, pp. 98–158 (2016). ISBN: 978-83-7880-398-0 (in Polish)Google Scholar
  12. 12.
    Michnik, R., Nowakowska, K., Jurkojć, J., Jochymczyk-Woźniak, K., Kopyta, I.: Motor functions assessment method based on energy changes in gait cycle. Acta Bioeng. Biomech. 19(4), 63–75 (2017). Scholar
  13. 13.
    Molloy, A., McDowell, B.C., Kerr, C., Cosgrove, A.P.: Further evidence of validity of the Gait Deviation Index. Gait Posture 31, 479–482 (2010)CrossRefGoogle Scholar
  14. 14.
    Morlock, M., Schneider, E., Bluhm, A., Vollmer, M.A., Bergmann, G., Muller, V., Honl, M.: Duration and frequency of everyday activities in total hip patients. J. Biomech. 34(7), 873–881 (2011)CrossRefGoogle Scholar
  15. 15.
    Nowakowska, K., Michnik, R., Jochymczyk-Woźniak, K., Jurkojć, J., Mandera, M., Kopyta, I.: Application of gait index assessment to monitor the treatment progress in patients with cerebral palsy. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Medicine 5th International Conference. Advances in Intelligent System and Computing, vol. 472(2), pp. 75–85. Springer, Cham (2016)Google Scholar
  16. 16.
    Opila-Correia, K.A.: Kinematics of high-heeled gait. Arch. Phys. Med. Rehabil. 71(5), 304–309 (1990)Google Scholar
  17. 17.
    Pierce, R., Orendurff, M., Thomas, S.S.: Gait parameters norms for children ages 6–14. Gait Posture 16(Suppl. 1), 53–54 (2002)Google Scholar
  18. 18.
    Pietraszewski, B., Winiarski, S., Jaroszczuk, S.: Three-dimensional human gait pattern - reference data for normal men. Acta of Bioeng. Biomech. 14(3), 9–16 (2002)Google Scholar
  19. 19.
    Pinzone, O., Schwartz, M.H., Thomason, P., Baker, R.: The comparison of normative reference data from different gait. Gait Posture 40(2), 286–290 (2014)CrossRefGoogle Scholar
  20. 20.
    Romei, R., Galli, M., Motta, F., Schwartz, M., Crivellini, M.: Use of the normalcy index for the evaluation of gait pathology. Gait Posture 19(1), 85–90 (2004)CrossRefGoogle Scholar
  21. 21.
    Schutte, L.M., Narayanan, U., Stout, J.L., Selber, P., Gage, J.R., Schwartz, M.H.: An index for quantifying deviations from normal gait. Gait Posture 11(1), 25–31 (2000)CrossRefGoogle Scholar
  22. 22.
    Schwartz, M., Rozumalski, A.: The gait deviation index: a new comprehensive index of gait pathology. Gait Posture 28(3), 351–357 (2008)CrossRefGoogle Scholar
  23. 23.
    Stansfield, B.W., Hillman, S.J., Hazlewood, M.E., Robb, J.E.: Regression analysis of gait parameters with speed in normal children walking at self-selected speeds. Gait Posture 23(3), 288–294 (2006)CrossRefGoogle Scholar
  24. 24.
    Steinwender, G., Saraph, V., Scheiber, S., Zwick, E.B., Witz, Ch., Hackl, K.: Intrasubject repeatability of gait analysis data in normal and spastic. Child. Clin. Biomech. 15(2), 134–139 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Katarzyna Jochymczyk-Woźniak
    • 1
    Email author
  • Katarzyna Nowakowska
    • 1
  • Robert Michnik
    • 1
  • Marek Gzik
    • 1
  • Dominik Kowalczykowski
    • 2
  1. 1.Department of Biomechatronics, Faculty of Biomedical EngineeringSilesian University of TechnologyZabrzePoland
  2. 2.Students Scientific “BIOKREATYWNI”, Faculty of Biomedical EngineeringSilesian University of TechnologyZabrzePoland

Personalised recommendations