Improving the Automated Detection of Silent AF Episodes Based on HR Variability Measures

  • Janusz WróbelEmail author
  • Krzysztof Horoba
  • Janusz Jeżewski
  • Adam Matonia
  • Tomasz Kupka
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 925)


Atrial fibrillation (AF) is one of the most common types of heart arrhythmias and it leads to increased risk of stroke and heart attack. We proposed improved method for automated AF detection with additional aggregation of short AF episodes to provide more reliable information on risk for the patient. The aggregation parameters underwent optimization process and evaluation study has been carried out with a use of two databases provided by Final results showed that the new method for automated detection of AF episodes was capable to detect more than 96% of all reference AF provided by the MIT-BIH Atrial Fibrillation Database, and above 93% for the Long-Term AF Database. At the same time less than 7% of the detected AF were false episodes for both databases. The proposed method can be easily implemented in the mobile instrumentation for long-term monitoring where the computational power is usually limited.


Atrial fibrillation Automated AF detection Heart rate variability measures 



This scientific research work is supported by The National Centre for Research and Development of Poland (grant No. STRATEGMED2/269343/18/NCBR/2016).


  1. 1.
    Heeringa, J., van der Kuip, D., Hofman, A., et al.: Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur. Heart J. 27(8), 949–953 (2006)CrossRefGoogle Scholar
  2. 2.
    Chan, P.H., Wong, C.K., Poh, Y.C., et al.: Diagnostic performance of a smartphone-based photoplethysmographic application for atrial fibrillation screening in a primary care setting. J. Am. Heart Assoc. 5(7), e003428 (2016)CrossRefGoogle Scholar
  3. 3.
    Desteghe, L., Raymaekers, Z., Lutin, M., et al.: Performance of handheld electrocardiogram devices to detect atrial fibrillation in a cardiology and geriatric ward setting. Europace 19, 29–39 (2016). Scholar
  4. 4.
    Haberman, Z.C., Jahn, R.T., Bose, R., et al.: Wireless smartphone ECG enables large-scale screening in diverse populations. J. Cardiovasc. Electrophysiol. 26(5), 520–526 (2015)CrossRefGoogle Scholar
  5. 5.
    Vaid, J., Poh, M.Z., Saleh, A., et al.: Diagnostic accuracy of a novel mobile application (Cardio Rhythm) for detecting atrial fibrillation. J. Am. Coll. Cardiol. 65(10), A361 (2015)CrossRefGoogle Scholar
  6. 6.
    Hindricks, G., Pokushalov, E., Urban, L.: Performance of a new leadless implantable cardiac monitor in detecting and quantifying atrial fibrillation results of the XPECT trial. Circ. Arrhythm. Electrophysiol. 3, 141–147 (2010)CrossRefGoogle Scholar
  7. 7.
    Camm, J.: Atrial fibrillation and risk. Clin. Cardiol. 35(Suppl. 1), 1–2 (2012)CrossRefGoogle Scholar
  8. 8.
    Lu, S., Zhao, H., Ju, K., et al.: Can photoplethysmography variability serve as an alternative approach to obtain heart rate variability information. J. Clin. Monit. Comput. 22(1), 23–29 (2008)CrossRefGoogle Scholar
  9. 9.
    Liang, K., Sun, Y., Tian, F., Ye, S.: Research on algorithm of extracting PPG signal for detecting atrial fibrillation based on probability density function. Open Biomed. Eng. J. 9(1), 179–184 (2015)CrossRefGoogle Scholar
  10. 10.
    Roj, D., Wrobel, J., Matonia, A., Sobotnicka, E.: Hardware design issues and functional requirements for smart wristband monitor of silent atrial fibrillation. In: Proceedings of 24th International Conference on Mixed Design of Integrated Circuits and Systems MIXDES 2017, Bydgoszcz, 22–24 June, pp. 596–600 (2017)Google Scholar
  11. 11.
    Wrobel, J., Matonia, A., Horoba, K., Jezewski, J., et al.: Pregnancy telemonitoring with smart control of algorithms for signal analysis. J. Med. Imag. Health Inform. 5(6), 1302–1310 (2015)CrossRefGoogle Scholar
  12. 12.
    Wrobel, J., Jezewski, J., Horoba, K., Pawlak, A., Czabanski, R., Jezewski, M., et al.: Medical cyber-physical system for home telecare of high-risk pregnancy – design challenges and requirements. J. Med. Imag. Health Inform. 5(6), 1295–1301 (2015)CrossRefGoogle Scholar
  13. 13.
    Matonia, A., Jezewski, J., Kupka, T., Horoba, K., Wrobel, J., Gacek, A.: The influence of coincidence of fetal and maternal QRS complexes on fetal heart rate reliability. Med. Biol. Eng. Comput. 44(5), 393–403 (2006)CrossRefGoogle Scholar
  14. 14.
    Jezewski, J., Matonia, A., Kupka, T., Roj, D., Czabanski, R.: Determination of the fetal heart rate from abdominal signals: evaluation of beat-to-beat accuracy in relation to the direct fetal electrocardiogram. Biomed. Eng. 57(5), 383–394 (2012)CrossRefGoogle Scholar
  15. 15.
    Jezewski, J., Horoba, K., Roj, D., Wrobel, J., Kupka, T., Matonia, A.: Evaluating the fetal heart rate baseline estimation algorithms by their influence on detection of clinically important patterns. Biocybern. Biomed. Eng. 36(4), 562–573 (2016)CrossRefGoogle Scholar
  16. 16.
    Wrobel, J., Roj, D., Jezewski, J., Horoba, K., Kupka, T., Jezewski, M.: Evaluation of the robustness of fetal heart rate variability measures to low signal quality. J. Med. Imag. Health Inform. 5(6), 1311–1318 (2015)CrossRefGoogle Scholar
  17. 17.
    Wrobel, J., Horoba, K., Pander, T., Jezewski, J., Czabanski, R.: Improving the fetal heart rate signal interpretation by application of myriad filtering. Biocybern. Biomed. Eng. 33(4), 211–221 (2013)CrossRefGoogle Scholar
  18. 18.
    Czabanski, R., Jezewski, J., Horoba, K., Jezewski, M.: Fetal state assessment using fuzzy analysis of the fetal heart rate signals – agreement with the neonatal outcome. Biocybern. Biomed. Eng. 33(3), 145–155 (2013)CrossRefGoogle Scholar
  19. 19.
    Ghodrati, A., Murray, B., Marinello, S.: RR interval analysis for detection of Atrial Fibrillation in ECG monitors. In: 30th Annual International Conference of the IEEE EMBS, pp. 601–604 (2008).
  20. 20.
    Logan, B., Healey, J.: Robust detection of atrial fibrillation for a long term telemonitoring system. In: Computers in Cardiology, pp. 619–622. IEEE (2005).
  21. 21.
    Duverney, D., Gaspoz, J.M., Pichot, V., Roche, F., et al.: High accuracy of automatic detection of atrial fibrillation using wavelet transform of heart rate intervals. Pacing Clin. Electrophysiol. 25(4), 457–462 (2002)CrossRefGoogle Scholar
  22. 22.
    Cerutti, S., Mainardi, L.T., Porta, A., Bianchi, A.M.: Analysis of the dynamics of RR interval series for the detection of atrial fibrillation episodes. In: Computers in Cardiology, pp. 77–80. IEEE (1997).
  23. 23.
    Tateno, K., Glass, L.: Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and \(\Delta \)RR intervals. Med. Biol. Eng. Comput. 39(6), 664–671 (2001)CrossRefGoogle Scholar
  24. 24.
    Dash, S., Chon, K., Lu, S., Raeder, E.: Automatic real time detection of atrial fibrillation. Ann. Biomed. Eng. 37(9), 1701–1709 (2009)CrossRefGoogle Scholar
  25. 25.
    Petrucci, E., Balian, V., Filippini, G., Mainardi, L.T.: Atrial fibrillation detection algorithms for very long term ECG monitoring. In: Computers in Cardiology, pp. 623–626. IEEE (2005).
  26. 26.
    Artis, S.G., Mark, R., Moody, G.: Detection of atrial fibrillation using artificial neural networks. In: Computers in Cardiology, pp. 173–176. IEEE (1991)Google Scholar
  27. 27.
    Henzel, N., Wrobel, J., Horoba, K.: Atrial fibrillation episodes detection based on classification of heart rate derived features. In: Proceedings of 24th International Conference on Mixed Design of Integrated Circuits and Systems, MIXDES 2017, Bydgoszcz, 22–24 June, pp. 571–576 (2017)Google Scholar
  28. 28.
    Roj, D., Wrobel, J., Matonia, A., Horoba, K., Henzel, N.: Control and signal processing software embedded in smart wristband monitor of silent atrial fibrillation. In: Proceedings of 24th International Conference on Mixed Design of Integrated Circuits and Systems, MIXDES 2017, Bydgoszcz, 22–24 June, pp. 585–590 (2017)Google Scholar
  29. 29.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning - Data Minining, Inference, and Prediction. Springer Series in Statistics, 2nd edn. Springer, New York (2009)zbMATHGoogle Scholar
  30. 30.
    Moody, G.B., Mark, R.G., et al.: A new method for detecting atrial fibrillation using R-R intervals. Comput. Cardiol. 10, 227–230 (1983)Google Scholar
  31. 31.
    Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)CrossRefGoogle Scholar
  32. 32.
    Petrutiu, S., Sahakian, A.V., Swiryn, S.: Abrupt changes in fibrillatory wave characteristics at the termination of paroxysmal atrial fibrillation in humans. Europace 9, 466–470 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Janusz Wróbel
    • 1
    Email author
  • Krzysztof Horoba
    • 1
  • Janusz Jeżewski
    • 1
  • Adam Matonia
    • 1
  • Tomasz Kupka
    • 1
  1. 1.Institute of Medical Technology and Equipment ITAMZabrzePoland

Personalised recommendations