Skip to main content

Reducing the Damage: Metabolism Behaviour Aesthetic Medicine

  • Chapter
  • First Online:
Regenerative Medicine Procedures for Aesthetic Physicians
  • 797 Accesses

Abstract

The process of ageing is due among other things to the oxidative damage exerted by both oxidative or nitrosative free radicals. These damages are also due to inflammation and cause as a final consequence programmed cell death or apoptosis. The tissues of young persons have antioxidant defences by scavenging free radicals, to decrease oxidative damages. Loss of these defences with age enhances oxidative damage and contributes importantly to the ageing process and to the pathogenesis of many age-related diseases. There are several regulatory elements that play a role in the control of the production of free radicals and also in the modulation of the antioxidant capacities. These include hormones such as GH, melatonin and oestrogens but also antioxidants like phytoestrogens or resveratrol. This chapter reviews all the process of ageing and its components as well as the antioxidant capacities of both the mentioned hormones and antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harman D. Free radical theory of aging. MutatRes. 1992a;275:257–66.

    CAS  Google Scholar 

  2. Sohal RS, Mockett RJ, Orr WC. Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med. 2002;33:575–86.

    Article  CAS  PubMed  Google Scholar 

  3. Troen BR. The biology of aging. Mt Sinai J Med. 2003;70:3–22.

    PubMed  Google Scholar 

  4. Wang X, Martindale JL. The cellular response to oxidative stress: influences of mitogen-activated protein kinase signaling pathways on cell survival. Biochem J. 1998;333:291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Matsuo M, Kaneko T. The chemistry of reactive oxygen species and related free radicals. In: Radák Z, editor. Free radicals in exercise and aging: human kinetics; 2000. p. 1–33.

    Google Scholar 

  6. Salvemini D, Ischiropoulos H, Cuzzocrea S. Roles of nitric oxide and superoxide in inflammation. Methods Mol Biol. 2003;225(p):291–303.

    CAS  PubMed  Google Scholar 

  7. Reiter RJ. Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol. 1998;56(p):359–84.

    Article  CAS  PubMed  Google Scholar 

  8. Drew B, Leeuwenburgh C. Aging and the role of reactive nitrogen species. AnnNYAcadSci. 2002;959:66–81.

    Article  CAS  Google Scholar 

  9. Bauer M, Bauer I. Heme oxygenase-1: redox regulation and role in the hepatic response to oxidative stress. Antioxid Redox Signal. 2002;4:749–58.

    Article  CAS  PubMed  Google Scholar 

  10. Lavrovsky Y, Song CS, Chatterjee B, Roy AK. Age-dependent increase of heme oxygenase-1 gene expression in the liver mediated by NFkappaB: Mech. Ageing Dev. 2000;114(p):49–60.

    Article  CAS  Google Scholar 

  11. Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, Walter CA, Richardson A. Does oxidative damage to DNA increase with age? Proc Natl Acad Sci U S A. 2001;98:10469–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oh-ishi S, Heinecke J, Ookawaran T, Miyazaki H, Haga S, Radák Z, Kizaki T, Ohno H. Role of lipid of lipoprotein oxidation. In: Radák Z, editor. Free radicals in exercise and aging: human kinetics; 2000. p. 212–57.

    Google Scholar 

  13. Mallol Mirón J, Giralt Batista M, Nogués Llort M, Sureda Batlle F, Romeu Ferrán M, Mulero Abellán M. Concepto y valoración del estrés oxidativo. In: Salvador-Carulla L, Cano Sanchez A, Cabo-Soler JR, editors. Longevidad. Tratado integral sobre la salud en la segunda mitad de la vida. Madrid: Editorial Médica Panamericana; 2004. p. 86–95.

    Google Scholar 

  14. Shigenaga MK, Ames BN. Assays for 8-hydroxy-2′-deoxyguanosine: a biomarker of in vivo oxidative DNA damage. Free Radic Biol Med. 1991;10:211–6.

    Article  CAS  PubMed  Google Scholar 

  15. Radák Z, Goto S. Oxidative modification of proteins and DNA. In: Radák Z, editor. Free radicals in exercise and aging: human kinetics; 2000. p. 178–209.

    Google Scholar 

  16. Sastre J, Pallardo FV, Vina J. Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life. 2000;49:427–35.

    Article  CAS  PubMed  Google Scholar 

  17. Quiles J, Ochoa J, Huertas J, Mataix J. Aspectos mitocondriales del envejecimiento. Papel de la grasa, de la dieta y el estrés oxidativo. Endocrinol Nutr. 2004;51:107–20.

    Article  CAS  Google Scholar 

  18. Albarran MT, Lopez-Burillo S, Pablos MI, Reiter RJ, Agapito MT. Endogenous rhythms of melatonin, total antioxidant status and superoxide dismutase activity in several tissues of chick and their inhibition by light. J Pineal Res. 2001;30:227–33.

    Article  CAS  PubMed  Google Scholar 

  19. Fridovich I. Superoxide anion radical, superoxide dismutase and related matters. J Biol Chem. 1997;272:18515–7.

    Article  CAS  PubMed  Google Scholar 

  20. Ji LL, Hollander J. Antioxidant defense: effects of aging and exercise. In: Radák Z, editor. Free radicals in exercise and aging: human kinetics, vol. 2000; 2003. p. 35–72.

    Google Scholar 

  21. Stadtman ER. Protein oxidation and aging. Science. 1992;257:1220–4.

    Article  CAS  PubMed  Google Scholar 

  22. Bejma J, Ramires P, Ji LL. Free radical generation and oxidative stress with ageing and exercise: differential effects in the myocardium and liver. Acta Physiol Scand. 2000;169:343–51.

    Article  CAS  PubMed  Google Scholar 

  23. Jeon TI, Lim BO, Yu BP, Lim Y, Jeon EJ, Park DK. Effect of dietary restriction on age-related increase of liver susceptibility to peroxidation in rats. Lipids. 2001;36:589–93.

    Article  CAS  PubMed  Google Scholar 

  24. Van Remmen H, Richardson A. Oxidative damage to mitochondria and aging. ExpGerontol. 2001;36:957–68.

    CAS  Google Scholar 

  25. Kerr J, Wyllie A, Currie A. Apoptosis - basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cohen R. Glucotoxicity and its mediators. Terapie. 1997;52:387–8.

    CAS  Google Scholar 

  27. Arce V, Devesa J. Hormona de crecimiento. In: Tresguerres JAF, editor. Tratado de Endocrinología básica y clínica Síntesis. Madrid; 2000. p. 337–78.

    Google Scholar 

  28. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a GH releasing acylated peptide from the stomach. Nature. 1999;402:656–60.

    Article  CAS  PubMed  Google Scholar 

  29. Tannenbaum GS. Somatostatin as a physiological regulator of pulsatile growth hormone secretion. Horm Research. 1988;29:70–4.

    Article  CAS  Google Scholar 

  30. Vance ML. Growth-hormone-releasing hormone. Clin Chem. 1990;36:415–20.

    CAS  PubMed  Google Scholar 

  31. Devesa J, Lima L, Tresguerres JAF. Neuroendocrine control of GH secretion in humans. Trends Endocrinol Metab. 1992;3:175–83.

    Article  CAS  PubMed  Google Scholar 

  32. Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology. 2000;141(11):4255–61.

    Article  CAS  PubMed  Google Scholar 

  33. García BM, Devesa J. GH. Proteínas transportadoras. Receptores. Acciones biológicas de IGF-I. In: Tresguerres JAF, editor. Tratado de Endocrinología básica y clínica. Madrid: Síntesis; 2000. p. 379–418.

    Google Scholar 

  34. Hew FL, Oneal D, Kamarudin N, Alford FP, Best JD. “Growth hormone deficiency and cardiovascular risk”. In: Shalet S.M. (ed.). Growth hormone in adults. Baillieres Clin Endocrinol Metab. 1998;12(2):199–216.

    Article  CAS  PubMed  Google Scholar 

  35. Rosen T, Bengtsson BA. Premature mortality due to cardiovascular disease in hypopituitarism. Lancet. 1990;336:285–8.

    Article  CAS  PubMed  Google Scholar 

  36. Rosen T, Bosaeus Y, Tölli J, Lindstedt G, Bengtsson BA. Increased body fat mass and decreased extracellular fluid volume in adults with GH deficiency. Clin Endocrinol. 1993;38:63–71.

    Article  CAS  Google Scholar 

  37. McCallum RW, Sainsbury CA, Spiers A, Dominiczak AF, Petrie JR, Sattar N, Connell JM. Growth hormone replacement reduces C-reactive protein and large-artery stiffness but does not alter endothelial function in patients with adult growth hormone deficiency. Clin Endocrinol (Oxf). 2005;62(4):473–9.

    Article  CAS  PubMed  Google Scholar 

  38. Toogood A.A. and Shalet S.M (1998) “Ageing and growth hormone status”. In: Shalet S.M. (ed.). Growth hormone in adults. Baillieres Clin Endocrinol Metab 12 (2): 281–296.

    Google Scholar 

  39. Cuttica CM, Castoldi L, Gorrini GP, Peluffo F, Delitala G, Filippa P, Fanciulli G, Giusti M. Effects of six-month administration of rhGH to healthy elderly subjects. Aging. 1997;9:193–7.

    CAS  PubMed  Google Scholar 

  40. Juul A, Adult GH. Deficiency and effect of GH treatment on muscle strength, cardiac function and exercise performance. In: Juul A, Jorgensen JOL, editors. GH in adults. Cambridge: Cambridge Univ Press; 1996. p. 234–45.

    Google Scholar 

  41. Savine R, Sönksen PH. Is the somatopause an indication for growth hormone replacement? J Endocrinol Investig. 1999;22:142–9.

    CAS  Google Scholar 

  42. Toogood AA, O’Neill PA, Shalet SM. Beyond the somatopause: GH deficiency in adults over the age of 60 years. J Clin Endocrinol Metab. 1996;81:460–5.

    CAS  PubMed  Google Scholar 

  43. Ghigo E, Arvat E, Broglio F, Papotti M, Muccioli G, Deghenghi R. Natural and synthetic growth hormone secretagogues: endocrine and non-endocrine activities suggesting their potential usefulness as anti-aging drug interactions. J Anti Aging Med. 2001;4:345–56.

    Article  CAS  Google Scholar 

  44. Sonntag WE, Lynch CD, Cooney PT, Hutchins PM. Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insuline-like growth factor-1. Endocrinology. 1997;138(8):3515–20.

    Article  CAS  PubMed  Google Scholar 

  45. Khan AS, Lynch CD, Sane DC, Willinghan MC, Sonntag WE. Growth hormone increases regional coronary blood flow and capillary density in aged rats. J Gerontol A Biol Sci Med. 2001;56(8):B364–71.

    Article  CAS  Google Scholar 

  46. Holloway L, Butterfield G, Hintz RL, Gesunheit N, Marcus R. Effects of recombinant hGH on metabolic indices, body composition and bone turnover in healthy elderly women. J Clin Endocrinol Metab. 1994;79:470–9.

    CAS  PubMed  Google Scholar 

  47. Rudman D, Feller AG, Nagraj HS, Gergans GA, Lalitha PY, Goldberg AF, Schlenker RA, Cohn L, Rudman IW, Mattson DE. Effects of human growth hormone in men over 60 years old. NEnglJMed. 1990;323:1–6.

    Article  CAS  Google Scholar 

  48. Nyberg F. GH in the brain: characteristics of specific brain targets for the hormone and their functional significance. Front Neuroendocrinol. 2000;21:330–48.

    Article  CAS  PubMed  Google Scholar 

  49. Gustafson K, Hagberg H, Bengtsson BA, Brantsing C, Isgaard J. Possible protective role of growth hormone in hypoxia-ischemia in neonatal rats. Pediatr Res. 1999;45:318–23.

    Article  CAS  PubMed  Google Scholar 

  50. Nyberg F, Sharma HS. Repeated topical application of growth hormone attenuates blood-spinal cord barrier permeability and edema formation following spinal cord injury: an experimental study in the rat using Evans blue, ([125])I-sodium and lanthanum tracers. Amino Acids. 2002;23:231–9.

    Article  CAS  PubMed  Google Scholar 

  51. Scheepens A, Sirimanne ES, Breier BH, Clark RG, Gluckman PD, Williams CE. Growth hormone as a neuronal rescue factor during recovery from CNS injury. Neuroscience. 2001;104:677–87.

    Article  CAS  PubMed  Google Scholar 

  52. Shetty AK, Turner DA. Vulnerability of the dentate gyrus to aging and intracerebroventricular administration of kainic acid. Exp Neurol. 1999;158:491–503.

    Article  CAS  PubMed  Google Scholar 

  53. Gallagher M, Bizon JL, Hoyt EC, Helm KA, Lund PK. Effects of aging on the hippocampal formation in a naturally occurring animal model of mild cognitive impairment. Exp Gerontol. 2003;38:71–7.

    Article  PubMed  Google Scholar 

  54. Rosenzweig ES, Barnes CA. Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog Neurobiol. 2003;69:143–79.

    Article  CAS  PubMed  Google Scholar 

  55. Bengtsson BA, Eden S, Lonn L, Kvist H, Stokland A, Lindstedt G, Bosaeus I, Tolli J, Sjostrom L, Isaksson OG. Treatment of adults with growth hormone (GH) deficiency with recombinant human GH. J Clin Endocrinol Metab. 1993;76:309–17.

    CAS  PubMed  Google Scholar 

  56. Despres JP, Lemieux I, Prud’homme D. Treatment of obesity: need to focus on high risk abdominally obese patients. Br Med J. 2001;322:716–20.

    Article  CAS  Google Scholar 

  57. Castillo C, Cruzado M, Ariznavarreta C, Gil-Loyzaga P, Lahera V, Cachofeiro V, JAF T. Effect of recombinant human GH administration on body composition and vascular function and structure in old male Wistar rats. Biogerontology. 2005;6:303–12.

    Article  CAS  PubMed  Google Scholar 

  58. Castillo C, Cruzado M, Ariznavarreta C, Gil-Loyzaga P, Lahera V, Cachofeiro V, Tresguerres JAF. Body composition and vascular effects of growth hormone administration in old female rats. Exp Gerontol. 2003;38(9):971–9.

    Article  CAS  PubMed  Google Scholar 

  59. Castillo C, Cruzado M, Ariznavarreta C, Lahera V, Cachofeiro V, Tresguerres JAF. Effects of ovariectomy and GH administration on body composition and vascular function and structure in old female rats. Biogerontology. 2005;6:49–60.

    Article  CAS  PubMed  Google Scholar 

  60. Evans LM, Davies JS, Goodfellow J, Rees JAE, Scanlon MF. Endothelial dysfunction in hypopituitary adults with growth hormone deficiency. Clin Endocrinol. 1999;50:457.

    Article  CAS  Google Scholar 

  61. Matz RL, Scott C, Stoclet C, Andriantsitohaina R. Age related endothelial dysfunction with respect to nitric oxide, endothelium-derived hyperpolarizing factor and cyclooxygenase products. Physiol Res. 2000;49:11–8.

    CAS  PubMed  Google Scholar 

  62. Maeso R, de las Heras N, Navarro-Cid J, Vázquez-Pérez S, Cediel E, Lahera V, Cachofeiro V. Alteraciones endoteliales en el envejecimiento. Nefrologia. 1999;19(suppl. 1):35–45.

    Google Scholar 

  63. Andrawis N, Jones DS, Abernethy DR. Aging is associated with endothelial dysfunction in the human forearm vasculature. J Am Geriatr Soc. 2000;48(2):193–8.

    Article  CAS  PubMed  Google Scholar 

  64. Forman K, Vara E, García C, Ariznavarreta C, Escames G, Tresguerres JAF. Cardiological aging in SAM model: effect of chronic treatment with growth hormone. Biogerontology. 2010;11:275–86.

    Article  CAS  PubMed  Google Scholar 

  65. Paredes SD, Rancan L, Kireev R, Gonzalez A, Louzao P, Gonzalez P, Rodriguez-Bobada C, Garcia C, Vara E, Tresguerres JAF. Melatonin counteracts at a transcriptional level the inflammatory and apoptotic response secondary to ischemic brain injury induced by middle cerebral artery blockade in aging rats. Bio Research Open Access. 2015;4:407–16.

    Article  CAS  Google Scholar 

  66. Castillo C, Salazar V, Ariznavarreta C, et al. Effect of melatonin administration on parameters related to oxidative damage in hepatocytes isolated from old Wistar rats. J Pineal Res. 2005;38:240–6.

    Article  CAS  PubMed  Google Scholar 

  67. Burgess N, Maguire EA, O'Keefe J. The human hippocampus and spatial and episodic memory. Neuron. 2002;35:625–41.

    Article  CAS  PubMed  Google Scholar 

  68. Morrison JH, Hof PR. Selective vulnerability of corticocortical and hippocampal circuits in aging and Alzheimer's disease. Prog Brain Res. 2002;136:467–86.

    Article  CAS  PubMed  Google Scholar 

  69. Bohlen und Halbach O, Unsicker K. Morphological alterations in the amygdala and hippocampus of mice during ageing. Eur J Neurosci. 2002;16:2434–40.

    Article  Google Scholar 

  70. Burman P, Broman JE, Hetta J, Wiklunt I, Ehrfurt EM, Hagg E, Karlsson FA. Quality of life in adults with GH deficiency. Response to treatment with rhGH in a placebo controlled 21 months trial. J Clin Endocrinol Meta. 1995;80:3585–90.

    Article  CAS  Google Scholar 

  71. Segovia G, Castellanos V, Ariznavarreta C, Mora F, Tresguerres JAF. Efecto de la hormona de crecimiento sobre las concentraciones de glutamato, GABA y glutamina en el hipotálamo de la rata. Endocrinol Nutr. 2001;48(supl 2):81.

    Google Scholar 

  72. Lobil PE, García-Aragón J, Lincoln DT, Barnard R, Wilcox JN, Waters MJ. Localizatión and ontogeny of GH receptor gene expressión en the CNS. Dev Brain Res. 1993;74:225–33.

    Article  Google Scholar 

  73. López-Fernández J, Sánchez Franco F, Velasco B, Tolón RM, Paros F, Cacicedo L. GH induces SS and IGF-I gene expressión in the cerebral hemispheres of aging rats. Endocrinology. 1996;137:4384–91.

    Article  PubMed  Google Scholar 

  74. Torrres AI, Pons S, Arévalo MA. The IGF I system in the rat cerebellum: developmental regulation and role in the neuronal survival and differentiation. J Neurosci Research. 1994;39:117–26.

    Article  Google Scholar 

  75. Trejo JL, Carro E, Torres AI. Circulating insulin-like grouth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci. 2001;21:1628–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kireev RA, Samuel Bitoun F, Sara Cuesta A, Alejandro Tejerina D, Carolina Ibarrola E, Enrique Moreno C, Elena Vara B, Tresguerres JAF. Melatonin treatment protects liver of Zucker rats after ischemia/reperfusion by diminishing oxidative stress and apoptosis. Eur J Pharmacol. 2013;701:185–93.

    Article  CAS  PubMed  Google Scholar 

  77. Kireev RA, Tresguerres ACF, Castillo C, Salazar V, Ariznavarreta C, Vara E, Tresguerres JAF. Effect of exogenous administration of melatonin and GH on prooxidant functions of the liver in aging male rats. J Pineal Research. 2007;42:64–70.

    Article  CAS  Google Scholar 

  78. Kireev RA, Tresguerres AF, Vara E, Ariznavarreta C, Tresguerres JAF. Effect of chronic treatments with GH, melatonin, estrogens and phytoestrogens on oxidative stress parameters in liver from aged female rats. Biogerontology. 2007;8:469–82.

    Article  CAS  PubMed  Google Scholar 

  79. Cuesta S, Kireev R, Forman K, Garcia C, Acuna D, Vara E, et al. Growth hormone can improve insulin resistance and differentiation in pancreas of senescence accelerated prone male mice (SAMP8). Growth Hormon IGF Res. 2011;21(2):63–8.

    Article  CAS  Google Scholar 

  80. Cuesta S, Kireev R, Forman K, Garcia C, Escames G, Vara E, Tresguerres JAF. Beneficial effect of melatonin treatment on inflammation, apoptosis and oxidative stress on the pancreas of senescence accelerated mice model. Mech Ageing Develop. 2011;132:573–82.

    Article  CAS  Google Scholar 

  81. Bartke A, Brown-Borg HM, Bode AM, Carlson J, Hunter WS, Bronson RT. Does growth hormone prevents or accelerates aging? Exp Gerontol. 1998;33:375–84.

    Article  Google Scholar 

  82. Bartke A. Is growth hormone deficiency a beneficial adaptation to aging? Evidence from experimental animals: trends Endocrinol.Metab, v. 14, p. 340-344. Sculature. J Am Geriatr Soc. 2003;48(2):193–8.

    Google Scholar 

  83. Corpas E, Harman SM, Blackman MR. Human GH and human aging. Endocr Rev. 1993;14:20–39.

    Article  CAS  PubMed  Google Scholar 

  84. Salomon F, Cuneo RC, Hesp R, Sönksen PH. The effects of treatment with recombinant human GH on body composition and metabolism in adults with GH deficiency. N Engl J Med. 1989;321:1797–803.

    Article  CAS  PubMed  Google Scholar 

  85. Thompson JL, Butterfield GE, Marcus R, Hintz RL, Van Loan M, Ghiron L, Hoffman AR. The effects of recombinant human insulin-like growth factor-I and growth hormone on body composition in elderly women. JClinEndocrinolMetab. 1995;80:1845–52.

    CAS  Google Scholar 

  86. Angelopoulos et al 1998.

    Google Scholar 

  87. Castillo C, Salazar V, Ariznavarreta V, Vara E, Tresguerres JAF. Effect of rhGH on age related hepatocyte changes in old male and female rats. Endocrine. 2004;25:33–9.

    Article  CAS  PubMed  Google Scholar 

  88. Kireev R, Cuesta S, Ibarrola C, Bela T, Gonzalez EM, Vara E, JAF T. Age-related differences in hepatic ischemia/reperfusion: gene activation, liver injury and protective effect of melatonin. J Surg Res. 2012;178:922–34.

    Article  CAS  PubMed  Google Scholar 

  89. Lonn L, Johansson G, Sjostrom L, Kvist H, Oden A, Bengtsson BA. Body composition and tissue distributions in growth hormone deficient adults before and after growth hormone treatment. ObesRes. 1996;4:45–54.

    CAS  Google Scholar 

  90. Tresguerres 2006. Phd Thesis Universidad Complutense 2006.

    Google Scholar 

  91. Cardinali D, Brusco L, Cutrera R. Ritmos biológicos. In: Tresguerres JAF, Aguilar Benítez de Lugo E, Devesa Múgica J, Moreno Esteban B, editors. Tratado de endocrinología básica y clínica. Madrid: Editorial Síntesis; 2000. p. 163–89.

    Google Scholar 

  92. Acuña-Castroviejo D, Escames Rosa G, León López J, Khady H. Melatonina, ritmos biológicos y estrés oxidativo. In: Salvador-Carulla L, Cano Sanchez A, Cabo-Soler JR, editors. Longevidad. Tratado integral sobre la salud en la segunda mitad de la vida. Madrid: Editorial Médica Panamericana; 2004. p. 216–24.

    Google Scholar 

  93. Kennaway DJ, Lushington K, Dawson D, Lack L, van den HC, Rogers N. Urinary 6-sulfatoxymelatonin excretion and aging: new results and a critical review of the literature: J. Pineal Res. 1999;27(p):210–20.

    Article  CAS  Google Scholar 

  94. Magri F, Sarra S, Cinchetti W, Guazzoni V, Fioravanti M, Cravello L, Ferrari E. Qualitative and quantitative changes of melatonin levels in physiological and pathological aging and in centenarians. J Pineal Res. 2004;36(p):256–61.

    Article  CAS  PubMed  Google Scholar 

  95. Reiter RJ, Tan DX, Burkhardt S. Reactive oxygen and nitrogen species and cellular and organismal decline: amelioration with melatonin: Mech. Ageing Dev. 2002;123(p):1007–19.

    Article  CAS  Google Scholar 

  96. Reiter RJ. Melatonin: clinical relevance. BestPractResClinEndocrinolMetab. 2003;17:273–85.

    CAS  Google Scholar 

  97. Reiter RJ, Tan DX, Cabrera J, D'Arpa D. Melatonin and tryptophan derivatives as free radical scavengers and antioxidants. AdvExpMedBiol. 1999b;467:379–87.

    CAS  Google Scholar 

  98. Reiter RJ, Tan D, Kim SJ, Manchester LC, Qi W, Garcia JJ, Cabrera JC, El Sokkary G, Rouvier-Garay V. Augmentation of indices of oxidative damage in life-long melatonin-deficient rats: Mech. Ageing Dev. 1999a;110(p):157–73.

    Article  CAS  Google Scholar 

  99. Tan D, Chen L, Poeggeler B, Manchester L, Reiter R. Melatonin: a potent, endogenous hydroxyl radical scavenger. EndocrJ. 1993;1:60–87.

    Google Scholar 

  100. Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species. J Pineal Res. 2007;42:28–42.

    Article  CAS  PubMed  Google Scholar 

  101. Reiter R, Tang L, Garcia JJ. Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci. 1997;60:2255–71.

    Article  CAS  PubMed  Google Scholar 

  102. Ling X, Zhang LM, Lu SD, Li XJ, Sun FY. Protective effect of melatonin on injuried cerebral neurons is associated with bcl-2 protein over-expression. Zhongguo Yao Li Xue Bao. 1999;20(p):409–14.

    CAS  PubMed  Google Scholar 

  103. de la Fuente M, Baeza I, Guayerbas N, Puerto M, Castillo C, Salazar V, Ariznavarreta C, Tresguerres JAF. Changes with aging in several leukocyte functions of male and female rats. Biogerontology. 2004;5:389–400.

    Article  PubMed  Google Scholar 

  104. BAEZA I, TRESGUERRES JAF, Ariznavarreta C, de la Fuente M. Effect of GH, melatonin, oestrogens and phytoestrogens on the oxidized glutathione (GSSG) / reduced glutathione(GSH) ratio and lipid peroxidation in aged ovariectomized rats. Biogerontology. 2010;11:687–701.

    Article  CAS  PubMed  Google Scholar 

  105. Tresguerres JAF, Kireev R, Forman K, Cuesta S, Tresguerres AF, Vara E. Effect of chronic melatonin administration on several physiological parameters from old wistar rats and samp8 mice. Curr Aging Sci. 2012;5:242–53.

    Article  CAS  PubMed  Google Scholar 

  106. Sugioka K, Shimosegawa Y, Nakano M. Estrogens as natural antioxidants of membrane phospholipid peroxidation. FEBS Lett. 1987;210(1):37–9.

    Article  CAS  PubMed  Google Scholar 

  107. Nathan L, Chaudhuri G. Antioxidant and prooxidant actions of estrogens: potential physiological and clinical implications. Semin Reprod Endocrinol. 1998;16(4):309–14.

    Article  CAS  PubMed  Google Scholar 

  108. Cuzzocrea S, Mazzon E, Sautebin L, Serraino I, Dugo L, Calabro G, Caputi AP, Maggi A. The protective role of endogenous estrogens in carrageenan-induced lung injury in the rat. Mol Med. 2001;7(7):478–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lacort M, Leal AM, Liza M, Martin C, Martinez R, Ruiz-Larrea MB. Protective effect of estrogens and catecholestrogens against peroxidative membrane damage in vitro. Lipids. 1995;30(2):141–6.

    Article  CAS  PubMed  Google Scholar 

  110. Liu Y, Shimizu I, Omoya T, Ito S, Gu XS, Zuo J. Protective effect of estradiol on hepatocytic oxidative damage. World J Gastroenterol. 2002;8(2):363–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Leal AM, Begona Ruiz-Larrea M, Martinez R, Lacort M. Cytoprotective actions of estrogens against tert-butyl hydroperoxide-induced toxicity in hepatocytes. Biochem Pharmacol. 1998;56(11):1463–9.

    Article  CAS  PubMed  Google Scholar 

  112. Green PS, Simpkins JW. Neuroprotective effects of estrogens: potential mechanisms of action. Int J Dev Neurosci. 2000;18(4–5):347–58.

    Article  CAS  PubMed  Google Scholar 

  113. Dykens JA, Simpkins JW, Wang J, Gordon K. Polycyclic phenols, estrogens and neuroprotection: a proposed mitochondrial mechanism. Exp Gerontol. 2003;38(1–2):101–7.

    Article  CAS  PubMed  Google Scholar 

  114. Persky AM, Green PS, Stubley L, Howell CO, Zaulyanov L, Brazeau GA, Simpkins JW. Protective effect of estrogens against oxidative damage to heart and skeletal muscle in vivo and in vitro. Proc Soc Exp Biol Med. 2000;223(1):59–66.

    Article  CAS  PubMed  Google Scholar 

  115. Borras C, Sastre J, Garcia-Sala D, Lloret A, Pallardo FV, Vina J. Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free Radic Biol Med. 2003;34(5):546–52.

    Article  CAS  PubMed  Google Scholar 

  116. Compston JE. Sex steroids and bone. Physiol Rev. 2001;81(1):419–47.

    Article  CAS  PubMed  Google Scholar 

  117. Mikkola TS, Clarkson TB. Estrogen replacement therapy, atherosclerosis, and vascular function. Cardiovasc Res. 2002;53(3):605–19.

    Article  CAS  PubMed  Google Scholar 

  118. Nasr A, Breckwoldt M. Estrogen replacement therapy and cardiovascular protection: lipid mechanisms are the tip of an iceberg. Gynecol Endocrinol. 1998;12:43–59.

    Article  CAS  PubMed  Google Scholar 

  119. Pinzani M, Romanelli RG, Magli S. Progression of fibrosis in chronic liver diseases: time to tally the score. J Hepatol. 2001;34(5):764–7.

    Article  CAS  PubMed  Google Scholar 

  120. Grandien K, Berkenstam A, Gustafsson JA. The estrogen receptor gene: promoter organization and expression. Int J Biochem Cell Biol. 1997;29(12):1343–69.

    Article  CAS  PubMed  Google Scholar 

  121. Badger AM, Blake SM, Dodds RA, Griswold DE, Swift BA, Rieman DJ, Stroup GB, Hoffman SJ, Gowen M. Idoxifene, a novel selective estrogen receptor modulator, is effective in a rat model of adjuvant-induced arthritis. J Pharmacol Exp Ther. 1999;291(3):1380–6.

    CAS  PubMed  Google Scholar 

  122. Miyamoto N, Mandai M, Suzuma I, Suzuma K, Kobayashi K, Honda Y. Estrogen protects against cellular infiltration by reducing the expressions of E-selectin and IL-6 in endotoxin-induced uveitis. J Immunol. 1999;163(1):374–9.

    CAS  PubMed  Google Scholar 

  123. Angele MK, Schwacha MG, Ayala A, Chaudry IH. Effect of gender and sex hormones on immune responses following shock. Shock. 2000;14(2):81–90.

    Article  CAS  PubMed  Google Scholar 

  124. Thomas T, Bryant M, Clark L, Garces A, Rhodin J. Estrogen and raloxifene activities on amyloid-beta-induced inflammatory reaction. Microvasc Res. 2001;61(1):28–39.

    Article  CAS  PubMed  Google Scholar 

  125. Pfeilschifter J, Koditz R, Pfohl M, Schatz H. Changes in proinflammatory cytokine activity after menopause. Endocr Rev. 2002;23(1):90–119.

    Article  CAS  PubMed  Google Scholar 

  126. Omoya T, Shimizu I, Zhou Y, Okamura Y, Inoue H, Lu G, Itonaga M, Honda H, Nomura M, Ito S. Effects of idoxifene and estradiol on NF-kappaB activation in cultured rat hepatocytes undergoing oxidative stress. Liver. 2001;21(3):183–91.

    Article  CAS  PubMed  Google Scholar 

  127. Grossman C. Possible underlying mechanisms of sexual dimorphism in the immune response, fact and hypothesis. J Steroid Biochem. 1989;34:241–51.

    Article  CAS  PubMed  Google Scholar 

  128. Gaillard RC, Spinedi E. Sex- and stress-steroids interactions and the immune system: evidence for a neuroendocrine-immunological sexual dimorphism. Domestic Anim Endocrinol. 1998;15:345–52.

    Article  CAS  Google Scholar 

  129. Verthelyi D. Sex hormones as immunomodulators in health and disease. Int Immunopharmacol. 2001;1:983–93.

    Article  CAS  PubMed  Google Scholar 

  130. Olsen NJ, Kovacs WJ. Gonadal steroids and immunity. Endocrin Rev. 1996;17:369–84.

    CAS  Google Scholar 

  131. Keller ET, Zhang J, Yao Z, Qi Y. The impact of chronic estrogen deprivation on immunologic parameters in the ovariectomized rhesus monkey (Macaca mulatta) model of menopause. J Reprod Immunol. 2001;50:41–55.

    Article  CAS  PubMed  Google Scholar 

  132. Wayne SJ, Rhyne RL, Garry PJ, Goodwin JS. Cell-mediated immunity as a predictor of morbidity and mortality in subjects over 60. J Gerontol. 1990;45:45–8.

    Article  Google Scholar 

  133. Asdell SA, Doornenbal H, Joshi SR, Sperling GA. The effects of sex steroid hormones upon longevity in rats. J. Reprod Fertil. 1967;14:113–20.

    Article  CAS  Google Scholar 

  134. Borras C, Sastre J, Garcia-Sala D, Lloret A, Pallardo FV, Vina J. Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free RadicBiolMed. 2003;34:546–52.

    Article  CAS  Google Scholar 

  135. Ruiz-Larrea MB, Leal AM, Martin C, Martinez R, Lacort M. Antioxidant action of estrogens in rat hepatocytes. Rev Esp Fisiol. 1997;53(2):225–9.

    CAS  PubMed  Google Scholar 

  136. Adlercreutz CH, Goldin BR, Gorbach SL, Hockerstedt KA, Watanabe S, Hamalainen EK, Markkanen MH, Makela TH, Wahala KT, Adlercreutz T. Soybean phytoestrogen intake and cancer risk. J Nutr. 1995;125(3 Suppl):757S–70S.

    CAS  PubMed  Google Scholar 

  137. Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD. Bioactive compounds in foods: their role in the prevention of.

    Google Scholar 

  138. Clarkson TB, Anthony MS. Phytoestrogens and coronary heart disease. Bailliere Clin Endocrinol Metab. 1998;12(4):589–604.

    Article  CAS  Google Scholar 

  139. Borras C, Gambini J, Gomez Cabrera C, Sastre J, Pallardo FV, Mann GE Viña J. Genistein, a soy isoflavone, up-regulates expression of antioxidant genes: involvement of estrogen receptors, ERK1/2, and NFkappaB. FASEB J. 2006;20(12):2136–8.

    Article  CAS  PubMed  Google Scholar 

  140. McCarty MF. Isoflavones made simple - genistein’s agonist activity for the beta-type estrogen receptor mediates their health benefits. Med Hypotheses. 2006;66(6):1093–114.

    Article  CAS  PubMed  Google Scholar 

  141. Adlercreutz H. Phytoestrogens. State of the art. Environ, Fox and P Harmacol. 1999;7:201–7.

    CAS  Google Scholar 

  142. Adlercreutz H. Phytoestrogens and cancer. Lancet Oncol. 2002;3:364–73.

    Article  PubMed  Google Scholar 

  143. Brzezinski A, Adlercreutz H, Shaoul R, et al. Short-term effects of phytoestrogen-rich diet on postmenopausal women. Am J Clin Nutr. 1994;60:333–40.

    Article  Google Scholar 

  144. Vedavanam K, Srijayanta S, O'Reilly J, Raman A, Wiseman H. Antioxidant action and potential antidiabetic properties of an isoflavonoid-containing soyabean phytochemical extract (SPE). Phytother Res. 1999;13(7):601–8.

    Article  CAS  PubMed  Google Scholar 

  145. Sierens J, Hartley JA, Campbell MJ, Leathem AJ, Woodside JV. Effect of phytoestrogen and antioxidant supplementation on oxidative DNA damage assessed using the comet assay. Mutat Res. 2001;485(2):169–76.

    Article  CAS  PubMed  Google Scholar 

  146. Mizutani K, Ikeda K, Nishikata T, Yamori Y. Phytoestrogens attenuate oxidative DNA damage in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats. J Hypertens. 2000;18(12):1833–40.

    Article  CAS  PubMed  Google Scholar 

  147. Arora A, Nair MG, Strasburg GM. Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Arch Biochem Biophys. 1998;356(2):133–41.

    Article  CAS  PubMed  Google Scholar 

  148. Rohrdanz E, Ohler S, Tran-Thi QH, Kahl R. The phytoestrogen daidzein affects the antioxidant enzyme system of rat hepatoma H4IIE cells. J Nutr. 2002;132(3):370–5.

    Article  CAS  PubMed  Google Scholar 

  149. Mitchell JH, Gardner PT, McPhail DB, Morrice PC, Collins AR, Duthie GG. Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Arch Biochem Biophys. 1998, 360(1):142–8.

    Article  CAS  PubMed  Google Scholar 

  150. Hodgson JM, Puddey IB, Croft KD, Mori TA, Rivera J, Beilin LJ. Isoflavonoids do not inhibit in vivo lipid peroxidation in subjects with high-normal blood pressure. Atherosclerosis. 1999;145(1):167–72.

    Article  CAS  PubMed  Google Scholar 

  151. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004;5:43(21).

    Google Scholar 

  153. Valenzano DR, Cellerino A. Resveratrol and the pharmacology of aging: a new vertebrate model to validate an old molecule. Cell Cycle. 2006;5(10):1027–32.

    Article  CAS  PubMed  Google Scholar 

  154. Guarente L, Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature. 2000;408(6809):255–62.

    Article  CAS  PubMed  Google Scholar 

  155. Frojdo S, Cozzone D, Vidal H, Pirola L. Resveratrol is a class IA phosphoinositide 3-kinase inhibitor. Biochem J. 2007;406(3):511–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Donath MY, Storling J, Berchtold LA, Billestrup N, Mandrup-Poulsen T. Cytokines and beta-cell biology: from concept to clinical translation. Endocr Rev. 2008;29(3):334–50.

    Article  CAS  PubMed  Google Scholar 

  157. Kobayashi H, Ouchi N, Kihara S, Walsh K, Kumada M, Abe Y, et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res. 2004;94(4):e27–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kharroubi I, Rasschaert J, Eizirik DL, Cnop M. Expression of adiponectin receptors in pancreatic beta cells. Biochem Biophys Res Commun. 2003;312(4):1118–22.

    Article  CAS  PubMed  Google Scholar 

  159. Chinetti G, Zawadski C, Fruchart JC, Staels B. Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARalpha, PPARgamma, and LXR. Biochem Biophys Res Commun. 2004;314(1):151–8.

    Article  CAS  PubMed  Google Scholar 

  160. Maeda MN, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50(9):2094–9.

    Article  CAS  PubMed  Google Scholar 

  161. Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008;8(2):157–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hattori R, Otani H, Maulik N, Das DK. Pharmacological preconditioning with resveratrol: role of nitric oxide. Am J Physiol Heart Circ Physiol. 2002;282(6):H1988–95.

    Article  CAS  PubMed  Google Scholar 

  163. Gurusamy N, Ray D, Lekli I, Das DK. Red wine antioxidant resveratrol-modified cardiac stem cells regenerate infarcted myocardium. J Cell Mol Med. 2010;14(9):2235–9.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Juric D, Wojciechowski P, Das DK, Netticadan T. Prevention of concentric hypertrophy and diastolic impairment in aortic-banded rats treated with resveratrol. Am J Physiol Heart Circ Physiol. 2007;292(5):H2138–43.

    Article  CAS  PubMed  Google Scholar 

  165. Csiszar A, Labinskyy N, Olson S, Pinto JT, Gupte S, Wu JM, et al. Resveratrol prevents monocrotaline-induced pulmonary hypertension in rats. Hypertension. 2009;54(3):668–75.

    Article  CAS  PubMed  Google Scholar 

  166. Csiszar A, Labinskyy N, Pinto JT, Ballabh P, Zhang H, Losonczy G, et al. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol Heart Circ Physiol. 2009;297(1):H13–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhang H, Zhang J, Ungvari Z, Zhang C. Resveratrol improves endothelial function: role of TNF{alpha} and vascular oxidative stress. Arterioscler Thromb Vasc Biol. 2009;29(8):1164–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhang H, Morgan B, Potter BJ, Ma L, Dellsperger KC, Ungvari Z, et al. Resveratrol improves left ventricular diastolic relaxation in type 2 diabetes by inhibiting oxidative/nitrosative stress: in vivo demonstration with magnetic resonance imaging. Am J Physiol Heart Circ Physiol. 2010;299(4):H985–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ungvari Z, Labinskyy N, Mukhopadhyay P, Pinto JT, Bagi Z, Ballabh P, et al. Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells. Am J Physiol Heart Circ Physiol. 2009;297(5):H1876–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus A. F. Tresguerres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tresguerres, J.A.F. (2019). Reducing the Damage: Metabolism Behaviour Aesthetic Medicine. In: Pinto, H., Fontdevila, J. (eds) Regenerative Medicine Procedures for Aesthetic Physicians. Springer, Cham. https://doi.org/10.1007/978-3-030-15458-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15458-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15457-8

  • Online ISBN: 978-3-030-15458-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics