Skip to main content

Abstract

The middle ear cavity is situated in the center of the temporal bone, at the intersection of two axes: the lateromedial axe between inner and outer ear canals and the postero - anterior axe between mastoid antrum and Eustachian tube. This chapter describes in depth the advanced anatomy of the four walls of the cavity, its roof and its floor along with their developmental stages to better understand the particularities of the anatomical key structures always in relation to surgical interest. In this second edition a concise knowledge concerning the mechanics of the tympanic membrane and middle ear is reported to better correlate anatomical details to function and surgical reconstruction..

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langman J. Embryologie Médicale. Paris: Masson; 1965. p. 34.

    Google Scholar 

  2. Michaels L. An epidermoid formation in the developing middle ear: possible source of cholesteatoma. J Otolaryngol. 1986;15(3):169–74.

    CAS  PubMed  Google Scholar 

  3. Michaels L. Origin of congenital cholesteatoma from a normally occurring epidermoid rest in the developing middle ear. Int J Pediatr Otorhinolaryngol. 1988;15(1):51–65.

    Article  CAS  PubMed  Google Scholar 

  4. Paço J, Branco C, Estibeiro H, Oliveira E, Carmo D. The posterosuperior quadrant of the tympanic membrane. Otolaryngol Head Neck Surg. 2009;140(6):884–8.

    Article  PubMed  Google Scholar 

  5. Daphalapurkar NP, Dai C, Gan RZ, Lu H. Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation. J Mech Behav Biomed Mater. 2009;2(1):82–92.

    Article  PubMed  Google Scholar 

  6. Gan RZ, Feng B, Sun Q. Three-dimensional finite element modeling of human ear for sound transmission. Ann Biomed Eng. 2004;32:847–59.

    Article  PubMed  Google Scholar 

  7. Zhao F, Koike T, Wang J, Sienz H, Meredith R. Finite element analysis of the middle ear transfer functions and related pathologies. Med Eng Phys. 2009;31:907–16.

    Article  Google Scholar 

  8. Shrapnell HJ. On the form and structure of the membrane timpani. Lond Med Gazette. 1832;10:120–4.

    Google Scholar 

  9. Henson OW Jr, Henson MM. The tympanic membrane: highly developed smooth muscle arrays in the annulus fibrosus of mustached bats. J Assoc Res Otolaryngol. 2000;1:25–32.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Adad B, Ragson BM, Ackerson L. Relationship of the facial nerve to the tympanic annulus: a direct anatomic examination. Laryngoscope. 1999;109:1189–92.

    Article  CAS  PubMed  Google Scholar 

  11. Makino K, Amatsu M. Epithelial migration on the tympanic membrane and external canal. Arch Otorhinolaryngol. 1986;243(1):39–42.

    Article  CAS  PubMed  Google Scholar 

  12. Lim DJ. Tympanic membrane: electron microscopic observations, part I: pars tensa. Acta Otolaryngol. 1968;66:181–98.

    Article  CAS  PubMed  Google Scholar 

  13. Lim DJ. Structure and function of the tympanic membrane: a review. Acta Otorhinolaryngol Belg. 1995;49:101–15.

    CAS  PubMed  Google Scholar 

  14. Lim DJ. Tympanic membrane: electron microscopic observations, part II: pars fláccida. Acta Otolaryngol. 1968;66:515–32.

    Article  CAS  PubMed  Google Scholar 

  15. Sadé J. Retraction pockets and attic cholesteatomas. Acta Otorhinolaryngol Belg. 1980;34:62–84.

    PubMed  Google Scholar 

  16. Merchant S, Rosowski J, Ravicz M. Middle-ear mechanics of type IV and type V tympanoplasty. II. Clinical analysis and surgical implications. Am J Otol. 1995;16:565–75.

    CAS  PubMed  Google Scholar 

  17. Kurokawa H, Goode RL. Sound pressure gain produced by the human middle ear. Otolaryngol Head Neck Surg. 1995;113(4):349–55.

    Article  CAS  PubMed  Google Scholar 

  18. Spector GJ, Ge XX. Development of the hypotympanum in the human fetus and neonate. Ann Otol Rhinol Laryngol Suppl. 1981;90(6 Pt 2):1–20. https://doi.org/10.1097/MAO.0b013e31822e5b8d.

    Article  CAS  PubMed  Google Scholar 

  19. Noda R. Development of the cerebral vessels of the human fetus [in Japanese]. Fukuoka Acta Med. 1958:1057–72.

    Google Scholar 

  20. Hirakoh G. On the fossa jugularis and outflow cranial venous blood through it [in Japanese]. J Kurume Med Assoc. 1962;25:965–71.

    Google Scholar 

  21. Okudera T, et al. Development of posterior fossa dural sinuses, emissary veins, and jugular bulb: morphological and radiologic study. AJNR Am J Neuroradiol. 1994;15:1871–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Park JH, Son SB, Hong HP, Lee HS. A case of jugular bulb diverticulum invading the internal auditory canal. Korean J Audiol. 2012;16:39–42.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Friedmann DR, Eubig J, McGill M, Babb JS, Pramanik BK, Lalwani AK. Development of the jugular bulb: a radiologic study. Otol Neurotol. 2011;32(8):1389–95.

    Article  PubMed  Google Scholar 

  24. Semaan M, et al. Jugular bulb and skull base pathologies: proposal for a novel classification system for jugular bulb positions and microsurgical implications. Neurosurg Focus. 2018;45(1):E5.

    Article  PubMed  Google Scholar 

  25. Roland JT Jr, Hoffman RA, Miller PJ, Cohen NL. Retrofacial approach to the hypotympanum. Arch Otolaryngol Head Neck Surg. 1995;121(2):233–6.

    Article  PubMed  Google Scholar 

  26. Potter GD, Graham MD. The carotid canal. Radiol Clin North Am. 1974;12:483–9.

    CAS  PubMed  Google Scholar 

  27. Hasebe S, Sando I, Orita Y. Proximity of carotid canal wall to tympanic membrane: a human temporal bone study. Laryngoscope. 2003;113(5):802–7.

    Article  PubMed  Google Scholar 

  28. Brook CD. The prevalence of high-riding jugular bulb in patients with suspected endolymphatic hydrops. J Neurol Surg B Skull Base. 2015;76(6):471–4.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Eby TL. Development of the facial recess: implications for cochlear implantation. Laryngoscope. 1996;106(5 Pt 2 Suppl 80):1–7.

    Article  CAS  PubMed  Google Scholar 

  30. Tóth M. Pre- and postnatal changes in the human tympanic cavity, Semmelweis University School of Doctoral Studies for Developmental Biology Ph.D. Thesis, Budapest; 2007.

    Google Scholar 

  31. Carey JP, Minor LB, Nager GT. Dehiscence or thinning of bone overlying the superior semicircular canal in a temporal bone survey. Arch Otolaryngol Head Neck Surg. 2000;126(2):137.

    Article  CAS  PubMed  Google Scholar 

  32. Bast TH. Ossification of the otic capsule in human fetuses. Contrib Embryol. 1930;121:53–82.

    Google Scholar 

  33. Sanna M, Fois P, Paolo F, Russo A, Falcioni M. Management of meningoencephalic herniation of the temporal bone: personal experience and literature review. Laryngoscope. 2009;119:1579–85.

    Article  PubMed  Google Scholar 

  34. De Carpentier J, Axon PR, Hargreaves SP, Gillespie JE, Ramsden RT. Imaging of temporal bone brain hernias: atypical appearances on magnetic resonance imaging. Clin Otolaryngol. 1999;24:328–34.

    Article  PubMed  Google Scholar 

  35. Toth M, Helling K, Baksa G, Mann W. Localization of congenital tegmen tympani defects. Otol Neurotol. 2007;28:1120–3.

    Article  PubMed  Google Scholar 

  36. Weber PC. Iatrogenic complications from chronic ear surgery. Otolaryngol Clin North Am. 2005;38:711–22.

    Article  PubMed  Google Scholar 

  37. Lang J. Skull base and related structures: atlas of clinical anatomy. 2nd ed. Stuttgart: Schattauer; 2001.

    Google Scholar 

  38. Horn KL, Brackman DE, Luxford WM, Shea JJ III. The supratubal recess in cholesteatoma surgery. Ann Otol Rhinol Laryngol. 1986;95:12–5.

    Article  CAS  PubMed  Google Scholar 

  39. Schuknecht HF, Gulya AJ. Anatomy of the temporal bone with surgical implications. Philadelphia: Lea & Febiger; 1986. p. 89–90.

    Google Scholar 

  40. Makki FM, Amoodi HA, van Wijhe RG, Bance M. Anatomic analysis of the mastoid tegmen: slopes and tegmen shape variances. Otol Neurotol. 2011;32(4):581–8.

    Article  PubMed  Google Scholar 

  41. Minor LB. Superior canal dehiscence syndrome. Am J Otol. 2000;21:9–19.

    Article  CAS  PubMed  Google Scholar 

  42. Ahren C, et al. Lethal intracranial complications following inflation in the external auditory canal in treatment of serous otitis media and due to defects in petrous bone. Acta Otolaryngol (Stockh). 1965;60:407–21.

    Article  Google Scholar 

  43. Lang DV. Macroscopic bony deficiency of the tegmen tympani in adult temporal bones. J Laryngol Otol. 1983;97:685–8.

    Article  CAS  PubMed  Google Scholar 

  44. Nadaraja GS, Gurgel RK, Fischbein NJ, Anglemyer A, Monfared A, Jackler RK. Radiographic evaluation of the tegmen in patients with superior semicircular canal dehiscence. Otol Neurotol. 2012;33:1245–50.

    Article  PubMed  Google Scholar 

  45. Puwanarajah P, Pretorius P, Bottrill I. Superior semicircular canal dehiscence syndrome: a new aetiology. J Laryngol Otol. 2008;122(7):741–4.

    Article  CAS  PubMed  Google Scholar 

  46. Dubrulle F, Kohler R, Vincent C, Casselman J. Deux cas particuliers de déhiscence du canal semicirculaire supérieur par déhiscence du sinus pétreux supérieur. J Neuroradiol. 2009;36:240–3. https://doi.org/10.1016/j.neurad.2009.02.002.

    Article  CAS  PubMed  Google Scholar 

  47. Tóth M, Medvegy T, Moser G, Patonay L. Development of the protympanum. Ann Anat. 2006;188(3):267–73.

    Article  PubMed  Google Scholar 

  48. Grand CM, Louryan S, Bank WO, Balériaux D, Brotchi J, Raybaud C. Agenesis of the internal carotid artery and cavernous sinus hypoplasia with contralateral cavernous sinus meningioma. Neuroradiology. 1993;35(8):588–90.

    Article  CAS  PubMed  Google Scholar 

  49. Savic D, Djeric D. Anatomical variations and relations in the medial wall of the bony portion of the eustachian tube. Acta Otolaryngol. 1985;99(5–6):551–6. https://doi.org/10.3109/00016488509182260.

    Article  CAS  PubMed  Google Scholar 

  50. Glastonbury CM, Harnsberger HR, Hudgins PA, Salzman KL. Lateralized petrous internal carotid artery: imaging features and distinction from the aberrant internal carotid artery. Neuroradiology. 2012;54(9):1007–13. https://doi.org/10.1007/s00234-012-1034-8.

    Article  PubMed  Google Scholar 

  51. PenidoNde O, Borin A, Fukuda Y, Lion CN. Microscopic anatomy of the carotid canal and its relations with cochlea and middle ear. Braz J Otorhinolaryngol. 2005;71(4):410–4.

    Article  Google Scholar 

  52. Young RJ, Shatzkes DR, Babb JS, Lalwani AK. The cochlear-carotid interval: anatomic variation and potential clinical implications. AJNR Am J Neuroradiol. 2006;27(7):1486–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jahrsdoerfer RA. Embryology of the facial nerve. Am J Otol. 1988;9:423–6.

    CAS  PubMed  Google Scholar 

  54. Nager GT, Proctor B. Anatomical variations and anomalies involving the facial canal. Otolaryngol Clin North Am. 1991;24:531–53.

    CAS  PubMed  Google Scholar 

  55. Jahrsdoerfer RA. Congenital absence of the oval window. ORL J Otorhinolaryngol Relat Spec. 1977;84:904–14.

    Google Scholar 

  56. Harada T, Black FO, Sand OI, Singleton GT. Temporal bone histopathologic findings in congenital anomalies of the oval window. Otolaryngol Head Neck Surg. 1980;88:275–87.

    Article  CAS  PubMed  Google Scholar 

  57. Gerhardt HJ, Otto HD. The intratemporal course of the facial nerve and its influence on the development of the ossicular chain. Acta Otolaryngol. 1981;91:567–73.

    Article  CAS  PubMed  Google Scholar 

  58. Lambert PR. Congenital absence of the oval window. Laryngoscope. 1990;100:37–40.

    Article  CAS  PubMed  Google Scholar 

  59. Zeifer B, Sabini P, Sonne J. Congenital absence of the oval window: radiologic diagnosis and associated anomalies. AJNR Am J Neuroradiol. 2000;21(2):322–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Cauldwell EW, Anson BJ. Stapes, fissula ante fenestram and associated structures in man. II. From embryos 6.7 to 50 mm in length. Arch Otolaryngol. 1942;36:891–925.

    Article  Google Scholar 

  61. Anson BJ, Cauldwell EW, Bast TH. The fissula ante fenestram of the human otic capsule. II. Aberrant form and contents. Ann Otol Rhinol Laryngol. 1948;57:103–28.

    Article  CAS  PubMed  Google Scholar 

  62. Tóth M, et al. Development and surgical anatomy of the round window niche. Annals of Anatomy - Anatomischer Anzeiger. 2006;188(2):93–101. https://doi.org/10.1016/j.aanat.2005.09.006.

    Article  PubMed  Google Scholar 

  63. Linder TE, Ma F, Huber A. Round window atresia and its effect on sound transmission. Otol Neurotol. 2003;24(2):259–63.

    Article  PubMed  Google Scholar 

  64. Djerić D, Savić D. Anatomical characteristics of the fossula fenestrae vestibule. J Laryngol Otol. 1987;101(5):426–31.

    Article  PubMed  Google Scholar 

  65. Ukkola-Pons E, Ayache D, Pons Y, Ratajczak M, Nioche C, Williams M. Oval window niche height: quantitative evaluation with CT before stapes surgery for otosclerosis. Am J Neuroradiol. 2013;34(5):1082–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Anson B, et al. The fissula ante fenestram of the human otic capsule; developmental and normal adult structure. Ann Otol Rhinol Laryngol. 1947;56:957–85.

    Article  CAS  PubMed  Google Scholar 

  67. Toth M, et al. The role of Fissula ante fenestram in unilateral sudden hearing loss. Laryngoscope. 2016;126:2823–6.

    Article  PubMed  Google Scholar 

  68. Marchioni D, Soloperto D, Colleselli E, Tatti MF, Patel N, Jufas N. Round window chamber and fustis: endoscopic anatomy and surgical implications. Surg Radiol Anat. 2016;38(9):1013–9. Epub 2016 Mar 14.

    Article  PubMed  Google Scholar 

  69. Chen Y, Yao W. Mechanical model of round window membrane under reverse excitation. Appl Math Mech. 2016;37(10):1341–8. 8p.

    Article  Google Scholar 

  70. Angeli RD, Lavinsky J, Setogutti ET, Lavinsky L. The crista fenestra and its impact on the surgical approach to the scala tympani during cochlear implantation. Audiol Neurotol. 2017;22:50–5.

    Article  Google Scholar 

  71. Atturo F, Barbara M, Rask-Andersen H. On the anatomy of the ‘hook’ region of the human cochlea and how it relates to cochlear implantation. Audiol Neurootol. 2014;19(6):378–85.

    Google Scholar 

  72. Li PM, Wang H, Northrop C, Merchant SN, Nadol JB Jr. Anatomy of the round window and hook region of the cochlea with implications for cochlear implantation and other endocochlear surgical procedures. Otol Neurotol. 2007;28(5):641–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Carpenter A-M, Muchow D, Goycoolea MV. Ultrastructural studies of the human round window membrane. Arch Otolaryngol Head Neck Surg. 1989;115(5):585–90. https://doi.org/10.1001/archotol.1989.01860290043012.

    Article  CAS  PubMed  Google Scholar 

  74. Fugita, et al. Otol Neurotol xx:xx (c) 2016.

    Google Scholar 

  75. Rask-Andersen H, Liu W, Erixon E, Kinnefors A, Pfaller K, Schrott-Fischer A, Glueckert R. Human cochlea: anatomical characteristics and their relevance for cochlear implantation. Anat Rec. 2012;295:1791–811.

    Article  Google Scholar 

  76. Kim M, Yang WS, Jeon JH, Choi JY. Electrode misdirection into the superior semicircular canal: complication of cochlear implantation by round window approach. Int Adv Otol. 2014;10(3):246–50.

    Article  Google Scholar 

  77. Goycoolea MV, Muchow DD, Sirvio LM, Winandy RM, Canafax DM, Hueb M. Extended middle ear drug delivery. Acta Otolaryngol Suppl. 1992;493:119–26.

    CAS  PubMed  Google Scholar 

  78. Mansour S, Nicolas K, Ahmad HH. Round window otosclerosis: radiologic classification and clinical correlations. Otol Neurotol. 2011;32(3):384–92.

    Article  PubMed  Google Scholar 

  79. Goycoolea MV, Muchow D, Schachern P. Experimental studies on round window structure: function and permeability. Laryngoscope. 1988;98(6 Pt 2 Suppl 44):1–20.

    Article  CAS  PubMed  Google Scholar 

  80. Kim CS, Cho TK, Jinn TH. Permeability of the round window membrane to horseradish peroxidase in experimental otitis media. Otolaryngol Head Neck Surg. 1990;103:918–25.

    Article  CAS  PubMed  Google Scholar 

  81. Penha R, Escada P. Round-window anatomical considerations in intratympanic drug therapy for inner-ear diseases. Int Tinnitus J. 2005;11(1):31–3.

    PubMed  Google Scholar 

  82. Mancheño M, Aristegui M, Sañudo JR. Round and oval window anatomic variability: its implications. Otol Neurotol. 2017;38(5):e50–7.

    Article  PubMed  Google Scholar 

  83. Tringali S, Koka K, Deveze A, Holland NJ, Jenkins HA, Tollin DJ. Round window membrane implantation with an active middle ear implant: a study of the effects on the performance of round window exposure and transducer tip diameter in human cadaveric temporal bones. Audiol Neurootol. 2010;15(5):291–302.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gopen Q, Rosowski JJ, Merchant SN. Anatomy of the normal human cochlear aqueduct with functional implications. Hear Res. 1997;107(1–2):9–22.

    Article  CAS  PubMed  Google Scholar 

  85. Ghiz AF, et al. Quantitative anatomy of the round window and cochlear aqueduct in guinea pigs. Hear Res. 2002;162(1–2):105–12. https://doi.org/10.1016/S0378-5955(01)00375-6. Source: PubMed.

    Article  Google Scholar 

  86. Anson BJ, Donaldson JA, Warpeha RL, Winch TR. The vestibular and cochlear aqueducts: their variational anatomy in the adult human ear. Laryngoscope. 1965;75(8):1203–23.

    Article  CAS  PubMed  Google Scholar 

  87. Park TS, Hoffman HJ, Humphreys RP, Chuang SH. Spontaneous cerebrospinal fluid otorrhea in association with a congenital defect of the cochlear aqueduct and Mondini dysplasia. Neurosurgery. 1982;11(3):356–62.

    Article  CAS  PubMed  Google Scholar 

  88. Carlborg BIR, Farmer JC Jr. Transmission of cerebrospinal fluid pressure via the cochlear aqueduct and endolymphatic sac. Am J Otolaryngol Head Neck Med Surg. 1983;4(4):273–82.

    CAS  Google Scholar 

  89. Bianchin G, et al. Cerebrospinal fluid leak in cochlear implantation: enlarged cochlear versus enlarged vestibular aqueduct (common cavity excluded). Int J Otolaryngol. 2016;2016:6591684. https://doi.org/10.1155/2016/6591684. 9 pages.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Stimmer H. Enlargement of the cochlear aqueduct: does it exist? Eur Arch Otorhinolaryngol. 2011;268(11):1655–61.

    Article  PubMed  Google Scholar 

  91. Leuwer RM, Westhofen M. Surgical anatomy of the singular nerve. Acta Otolaryngol. 1996;116(4):576–80.

    Article  CAS  PubMed  Google Scholar 

  92. Leveque M, Labrousse M, Seidermann L, Chays A. Surgical therapy in intractable benign paroxysmal positional vertigo. Otolaryngol Head Neck Surg. 2007;136:693–8. Review.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mansour, S., Magnan, J., Ahmad, H.H., Nicolas, K., Louryan, S. (2019). Middle Ear Cavity. In: Comprehensive and Clinical Anatomy of the Middle Ear. Springer, Cham. https://doi.org/10.1007/978-3-030-15363-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15363-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15362-5

  • Online ISBN: 978-3-030-15363-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics