Skip to main content

Efficient FPGA Implementation of an Integrated Bilateral Key Confirmation Scheme for Pair-Wise Key-Establishment and Authenticated Encryption

  • Conference paper
  • First Online:

Abstract

The purpose of this paper is to propose a bilateral key confirmation scheme which provides a trustworthy key establishment between two communicating parties. There are various cryptographic schemes proposed based on unilateral key confirmation. But, such schemes do not confirm the equality of the common secret information computed independently by each communicating party, and do not consider whether the other end is the intended owner of the shared secret. However, exchanging of the secret information blindly without verifying that both of the ends have computed the same common secret information and without ensuring the identity of the other end with whom they are communicating, can create security risks since attackers can impersonate acting as a claimed sender or recipient. The proposed work provides bilateral key confirmation for pair-wise key-establishment based on FPGA by integrating a key agreement protocol and an authenticated encryption scheme. The implementation outcomes show the proposed scheme’s reasonable hardware complexity and enhanced performance compared to existing similar works.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  2. Boneh, D., Shparlinski, I.E.: On the unpredictability of bits of the elliptic curve Diffie-Hellman scheme. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 201–212. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_12

    Chapter  Google Scholar 

  3. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. ACM Trans. Commun 21, 120–126 (1978)

    Article  MathSciNet  Google Scholar 

  4. Gutub, A.A., Khan, F.A.: Hybrid crypto hardware utilizing symmetric-key & public-key cryptosystems. In: IEEE International Conference on Advanced Computer Science Applications and Technologies (ACSAT), pp. 116–121 (2013)

    Google Scholar 

  5. Nadjia, A., Mohamed, A.: AES IP for hybrid cryptosystem RSA-AES. In: IEEE 12th International Multi-Conference on Systems, Signals & Devices (SSD 2015), pp. 1–6 (2015)

    Google Scholar 

  6. Kapur, R.K., Khatri, S.K.: Secure data transfer in MANET using symmetric and asymmetric cryptography. In: IEEE International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), pp. 1–5 (2015)

    Google Scholar 

  7. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_12

    Chapter  Google Scholar 

  8. Martínez, V.G., Alvarez, F.H., Encinas, L.H., Ávila, C.S..: A comparison of the standardized versions of ECIES. In: IEEE Sixth International Conference on Information Assurance and Security (2010)

    Google Scholar 

  9. Martínez, V.G., Álvarez, F.H., Encinas, L. H.: Analysis of ECIES and other cryptosystems based on elliptic curves. CSIC Digital (2013)

    Google Scholar 

  10. Barker, E., Chen, L., Roginsky, A., Vassilev, A., Davis, R.: Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography. NIST Special Publication 800-56A Revision 3, April 2018

    Google Scholar 

  11. Dworkin, M.: NIST Special Publication 800-38D: Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC (2007)

    Google Scholar 

  12. Federal Information Processing Standards (FIPS) Publication 180-4,: Secure Hash Standard (SHS), vol. 4 (2015)

    Google Scholar 

  13. Satoh, A., Sugawara, T., Aoki, T.: High-speed pipelined hardware architecture for Galois counter mode. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 118–129. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75496-1_8

    Chapter  Google Scholar 

  14. Wang, J., Shou, G., Hu, Y., Guo, Z.: High-speed architectures for GHASH based on efficient bit-parallel multipliers. In: IEEE International Conference on Wireless Communications, Networking and Information Security (WCNIS), pp. 582–586 (2010)

    Google Scholar 

  15. Mastrovito, E.D.: VLSI architectures for computations in Galois fields. Ph.D. thesis, Linköping University, Department of Electrical Engineering, Linköping, Sweden (1991)

    Google Scholar 

  16. Montgomery, P.: Modular multiplication without trial division. Math. Comput. 44, 519–521 (1985)

    Article  MathSciNet  Google Scholar 

  17. Zhou, G., Michalik, H., Hinsenkamp, L.: Improving throughput of AES-GCM with pipelined karatsuba multipliers on FPGAs. In: Becker, J., Woods, R., Athanas, P., Morgan, F. (eds.) ARC 2009. LNCS, vol. 5453, pp. 193–203. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00641-8_20

    Chapter  Google Scholar 

  18. Abdellatif, K.M., Chotin-Avot, R., Mehrez, H.: Authenticated encryption on FPGAs from the static part to the reconfigurable part. Microprocess. Microsyst. 38(6), 526–538 (2014)

    Article  Google Scholar 

  19. Abdellatif, K.M., Chotin-Avot, R., Mehrez, H.: AES-GCM and AEGIS: efficient and high speed hardware ımplementations. J. Signal Process. Syst. 88(1), 1–12 (2017)

    Article  Google Scholar 

  20. Sandoval, M.M., Uribe, C.F.: A hardware architecture for elliptic curve cryptography and lossless data compression. In: IEEE International Conference on Electronics, Communications and Computers, pp. 113–118 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abiy Tadesse Abebe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tadesse Abebe, A., Negash Shiferaw, Y., Gebeye Abera, W., Kumar, P.G.V.S. (2019). Efficient FPGA Implementation of an Integrated Bilateral Key Confirmation Scheme for Pair-Wise Key-Establishment and Authenticated Encryption. In: Zimale, F., Enku Nigussie, T., Fanta, S. (eds) Advances of Science and Technology. ICAST 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 274. Springer, Cham. https://doi.org/10.1007/978-3-030-15357-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15357-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15356-4

  • Online ISBN: 978-3-030-15357-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics