Skip to main content

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 744 Accesses

Abstract

The standard nonlinear thermoelastic model most often used for modeling wave mechanics in single crystals and polycrystals, either anisotropic or isotropic, is described. The theoretical formulation is based on a Lagrangian finite strain tensor. General kinematics and thermodynamics are developed, followed by application to planar shock loading along a pure mode direction. An explicit analytical solution is reported for planar shock compression of a solid characterized by an internal energy potential of order four in strain but truncated at first order in entropy. Particular forms of material coefficients are presented for cubic crystals and isotropic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brugger, K.: Thermodynamic definition of higher order elastic constants. Phys. Rev. 133, A1611–A1612 (1964)

    Article  ADS  Google Scholar 

  2. Clayton, J.: Modeling dynamic plasticity and spall fracture in high density polycrystalline alloys. Int. J. Solids Struct. 42, 4613–4640 (2005)

    Article  Google Scholar 

  3. Clayton, J.: A continuum description of nonlinear elasticity, slip and twinning, with application to sapphire. Proc. R. Soc. Lond. A 465, 307–334 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Clayton, J.: Deformation, fracture, and fragmentation in brittle geologic solids. Int. J. Fract. 173, 151–172 (2010)

    Article  Google Scholar 

  5. Clayton, J.: Nonlinear Mechanics of Crystals. Springer, Dordrecht (2011)

    Book  Google Scholar 

  6. Clayton, J.: Nonlinear Eulerian thermoelasticity for anisotropic crystals. J. Mech. Phys. Solids 61, 1983–2014 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. Clayton, J., Chung, P.: An atomistic-to-continuum framework for nonlinear crystal mechanics based on asymptotic homogenization. J. Mech. Phys. Solids 54, 1604–1639 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  8. Davison, L.: Fundamentals of Shock Wave Propagation in Solids. Springer, Berlin (2008)

    MATH  Google Scholar 

  9. Fowles, R.: Dynamic compression of quartz. J. Geophys. Res. 72, 5729–5742 (1967)

    Article  ADS  Google Scholar 

  10. Germain, P., Lee, E.: On shock waves in elastic-plastic solids. J. Mech. Phys. Solids 21, 359–382 (1973)

    Article  ADS  Google Scholar 

  11. Graham, R.: Determination of third- and fourth-order longitudinal elastic constants by shock compression techniques–application to sapphire and fused quartz. J. Acoust. Soc. Am. 51, 1576–1581 (1972)

    Article  ADS  Google Scholar 

  12. Graham, R.: Solids Under High-Pressure Shock Compression. Springer, New York (1993)

    Book  Google Scholar 

  13. Guinan, M., Steinberg, D.: Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements. J. Phys. Chem. Solids 35, 1501–1512 (1974)

    Article  ADS  Google Scholar 

  14. Malvern, L.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs NJ (1969)

    Google Scholar 

  15. McQueen, R., Marsh, S., Taylor, J., Fritz, J., Carter, W.: The equation of state of solids from shock wave studies. In: Kinslow, R. (ed.) High-Velocity Impact Phenomena, pp. 294–417. Academic Press, New York (1970)

    Google Scholar 

  16. Perrin, G., Delannoy-Coutris, M.: Analysis of plane elastic-plastic shock-waves from the fourth-order anharmonic theory. Mech. Mater. 2, 139–153 (1983)

    Article  Google Scholar 

  17. Spiegel, M., Liu, J.: Mathematical Handbook of Formulas and Tables, 2nd edn. McGraw-Hill, New York (1999)

    Google Scholar 

  18. Teodosiu, C.: Elastic Models of Crystal Defects. Springer, Berlin (1982)

    Book  Google Scholar 

  19. Thurston, R.: Effective elastic coefficients for wave propagation in crystals under stress. J. Acoust. Soc. Am. 37, 348–356 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  20. Thurston, R.: Waves in solids. In: Truesdell, C. (ed.) Handbuch der Physik, vol. VI, pp. 109–308. Springer, Berlin (1974)

    Google Scholar 

  21. Thurston, R., Brugger, K.: Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media. Phys. Rev. 133, 1604–1612 (1964)

    Article  ADS  Google Scholar 

  22. Thurston, R., McSkimin, H., Andreatch, P.: Third-order elastic coefficients of quartz. J. Appl. Phys. 37, 267–275 (1966)

    Article  ADS  Google Scholar 

  23. Vogler, T., Clayton, J.: Heterogeneous deformation and spall of an extruded tungsten alloy: plate impact experiments and crystal plasticity modeling. J. Mech. Phys. Solids 56, 297–335 (2008)

    Article  ADS  Google Scholar 

  24. Wallace, D.: Thermoelasticity of stressed materials and comparison of various elastic constants. Phys. Rev. 162, 776–789 (1967)

    Article  ADS  Google Scholar 

  25. Wallace, D.: Thermodynamics of Crystals. Wiley, New York (1972)

    Book  Google Scholar 

  26. Wallace, D.: Flow process of weak shocks in solids. Phys. Rev. B 22, 1487–1494 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  27. Wang, H., Li, M.: Ab initio calculations of second-, third-, and fourth-order elastic constants for single crystals. Phys. Rev. B 79, 224102 (2009)

    Article  ADS  Google Scholar 

  28. Winey, J., Gupta, Y.: Nonlinear anisotropic description for shocked single crystals: thermoelastic response and pure mode wave propagation. J. Appl. Phys. 96, 1993–1999 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clayton, J.D. (2019). Lagrangian Formulation. In: Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-030-15330-4_3

Download citation

Publish with us

Policies and ethics