Skip to main content

Removal of Strontium by Physicochemical Adsorptions and Ion Exchange Methods

  • Chapter
  • First Online:
Strontium Contamination in the Environment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 88))

Abstract

Strontium, a relatively abundant alkaline element in the earth’s crust, occurs in four stable isotopes, 84Sr, 86Sr, 87Sr and 88Sr. The separation of soluble Sr2+ ion from water, mainly seawater, can be achieved through one or a combination of methods such as adsorption, chemical precipitation, ion exchange, membrane technology and solvent extraction, amongst which adsorption and membrane processes are popular solutions. The regeneration of spent adsorbents along with Sr recovery is the inherent advantage of the adsorption process. Natural adsorbents such as alginate microspheres, attapulgite, bentonite, dolomite, goethite, hematite and natural zeolites and inorganic ion-exchange materials, viz. activated carbon, antimony oxide, artificial zeolites, carbon and titanate nanotubes, gel and macroporous resins, titanium oxide and synthetic birnessite, have been used for immobilization of Sr. Industrial wastes (coal fly ash and industrial sludges) and agricultural byproducts (almond green hull, eggplant hull, moss and waste rice straw) are also potential Sr adsorbents. The adsorption process is greatly influenced by pH, initial concentration of contaminant, temperature and textural characteristics of the adsorbents. Membranes from polymeric and ceramic materials have also been used for Sr attenuation, and hybrid membrane technologies using multiple membranes have been found to be effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyer A, Ning P, Killey D, Klukas M, Rowan D, Simpson AJ, Passeport E (2018) Strontium adsorption and desorption in wetlands: role of organic matter functional groups and environmental implications. Water Res 133:27–36

    Article  CAS  Google Scholar 

  2. Andrews MG, Jacobson AD (2017) The radiogenic and stable Sr isotope geochemistry of basalt weathering in Iceland: role of hydrothermal calcite and implications for long-term climate regulation. Geochim Cosmochim Acta 215:247–262

    Article  CAS  Google Scholar 

  3. Nie Z, Finck N, Heberling F, Pruessmann T, Liu C, Lützenkirchen J (2017) Adsorption of selenium and strontium on goethite: EXAFS study and surface complexation modeling of the ternary systems. Environ Sci Technol 51:3751–3758

    Article  CAS  Google Scholar 

  4. Hong HJ, Kim BG, Ryu J, Park IS, Chung KS, Lee SM, Lee JB, Jeong HS, Kim H, Ryu T (2018) Preparation of highly stable zeolite-alginate foam composite for strontium(90Sr) removal from seawater and evaluation of Sr adsorption performance. J Environ Manag 205:192–200

    Article  CAS  Google Scholar 

  5. Kilincarslan Kaygun A, Eral M, Akyil Erenturk S (2017) Removal of cesium and strontium using natural attapulgite: evaluation of adsorption isotherm and thermodynamic data. J Radioanal Nucl Chem 311:1459–1464

    Article  CAS  Google Scholar 

  6. Siroux B, Beaucaire C, Tabarant M, Benedetti MF, Reiller PE (2017) Adsorption of strontium and caesium onto an Na-MX80 bentonite: experiments and building of a coherent thermodynamic modelling. Appl Geochem 87:167–175

    Article  CAS  Google Scholar 

  7. Park Y, Lee YC, Shin WS, Choi SJ (2010) Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate-polyacrylonitrile (AMP-PAN). Chem Eng J 162:685–695

    Article  CAS  Google Scholar 

  8. Li YC, Min XB, Ke Y, Chai LY, Shi MQ, Tang CJ, Wang QW, Liang YJ, Lei J, Liu DG (2018) Utilization of red mud and Pb/Zn smelter waste for the synthesis of a red mud-based cementitious material. J Hazard Mater 344:343–349

    Article  CAS  Google Scholar 

  9. Li T, He F, Dai YD (2016) Prussian blue analog caged in chitosan surface-decorated carbon nanotubes for removal cesium and strontium. J Radioanal Nucl Chem 310:1139–1145

    Article  CAS  Google Scholar 

  10. Fang XH, Fang F, Lu CH, Zheng L (2017) Removal of Cs+, Sr2+, and Co2+ ions from the mixture of organics and suspended solids aqueous solutions by zeolites. Nucl Eng Technol 49:556–561

    Article  CAS  Google Scholar 

  11. Hamed MM, Aly MI, Nayl AA (2016) Kinetics and thermodynamics studies of cobalt, strontium and caesium sorption on marble from aqueous solution. Chem Ecol 32:68–87

    Article  CAS  Google Scholar 

  12. Li K, Pang X (2014) Sorption of radionuclides by cement-based barrier materials. Cem Concr Res 65:52–57

    Article  CAS  Google Scholar 

  13. Janusz W, Skwarek E (2016) Study of sorption processes of strontium on the synthetic hydroxyapatite. Adsorption 22:697–706

    Article  CAS  Google Scholar 

  14. Koshy N, Singh DN (2016) Fly ash zeolites for water treatment applications. J Environ Chem Eng 4:1460–1472

    Article  CAS  Google Scholar 

  15. Nishiyama Y, Hanafusa T, Yamashita J, Yamamoto Y, Ono T (2016) Adsorption and removal of strontium in aqueous solution by synthetic hydroxyapatite. J Radioanal Nucl Chem 307:1279–1285

    Article  CAS  Google Scholar 

  16. Pathak P (2017) An assessment of strontium sorption onto bentonite buffer material in waste repository. Environ Sci Pollut Res 24:8825–8836

    Article  CAS  Google Scholar 

  17. Lee T, Na CK, Park H (2018) Adsorption characteristics of strontium onto K2Ti4O9 and PP-g-AA nonwoven fabric. Environ Eng Res 23:330–338

    Article  Google Scholar 

  18. Ahmadpour A, Zabihi M, Tahmasbi M, Bastami TR (2010) Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions. J Hazard Mater 182:552–556

    Article  CAS  Google Scholar 

  19. Kubota T, Fukutani S, Ohta T, Mahara Y (2013) Removal of radioactive cesium, strontium, and iodine from natural waters using bentonite, zeolite, and activated carbon. J Radioanal Nucl Chem 296:981–984

    Article  CAS  Google Scholar 

  20. Chegrouche S, Mellah A, Barkat M (2009) Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies. Desalination 235:306–318

    Article  CAS  Google Scholar 

  21. Vipin AK, Ling S, Fugetsu B (2016) Removal of Cs+ and Sr2+ from water using MWCNT reinforced zeolite-A beads. Microporous Mesoporous Mater 224:84–88

    Article  CAS  Google Scholar 

  22. Choe SR, Haldorai Y, Jang SC, Rethinasabapathy M, Lee YC, Han YK, Jun YS, Roh C, Huh YS (2018) Fabrication of alginate/humic acid/Fe-aminoclay hydrogel composed of a grafted-network for the efficient removal of strontium ions from aqueous solution. Environ Technol Innov 9:285–293

    Article  Google Scholar 

  23. Smičiklas I, Dimović S, Plećaš I (2007) Removal of Cs1+, Sr2+ and Co2+ from aqueous solutions by adsorption on natural clinoptilolite. Appl Clay Sci 35:139–144

    Article  Google Scholar 

  24. Amer H, Moustafa WM, Farghali AA, El Rouby WMA, Khalil WF (2017) Efficient removal of Cobalt(II) and Strontium(II) metals from water using ethylene diamine tetra-acetic acid functionalized graphene oxide. Z Anorg Allg Chem 643:1776–1784

    Article  CAS  Google Scholar 

  25. Jang J, Mirana W, Divine SD, Nawaz M, Shahzad A, Woo SH, Lee DS (2018) Rice straw-based biochar beads for the removal of radioactive strontium from aqueous solution. Sci Total Environ 615:698–707

    Article  CAS  Google Scholar 

  26. Chiang PN, Wang MK, Huang PM, Wang JJ, Chiu CY (2010) Cesium and strontium sorption by selected tropical and subtropical soils around nuclear facilities. J Environ Radioact 101:472–481

    Article  CAS  Google Scholar 

  27. Powell BA, Miller T, Kaplan DI (2015) On the influence of ionic strength on radium and strontium sorption to Sandy loam soils. J South Carolina Acad Sci 13:4

    Google Scholar 

  28. Abdel-Karim AAM, Zaki AA, Elwan W, El-Naggar MR, Gouda MM (2016) Experimental and modeling investigations of cesium and strontium adsorption onto clay of radioactive waste disposal. Appl Clay Sci 132-133:391–401

    Article  CAS  Google Scholar 

  29. Başçetin E, Atun G (2010) Adsorptive removal of strontium by binary mineral mixtures of montmorillonite and zeolite. J Chem Eng Data 55:783–788

    Article  Google Scholar 

  30. Ning Z, Ishiguro M, Koopal LK, Sato T, Kashiwagi JI (2017) Strontium adsorption and penetration in kaolinite at low Sr2+ concentration. Soil Sci Plant Nutr 63:14–17

    Article  CAS  Google Scholar 

  31. Wallace SH, Shaw S, Morris K, Small JS, Fuller AJ, Burke IT (2012) Effect of groundwater pH and ionic strength on strontium sorption in aquifer sediments: implications for 90 Sr mobility at contaminated nuclear sites. Appl Geochem 27:1482–1491

    Article  CAS  Google Scholar 

  32. Koshy N, Jha B, Kadali S, Singh DN (2015) Synthesis and characterization of Ca and Na zeolites (non-pozzolanic materials) obtained from fly-ash–Ca(OH)2 interaction. Mater Perform Charact 4:MPC20140053

    Article  Google Scholar 

  33. Koshy N, Singh DN, Jha B, Kadali S, Patil J (2015) Characterization of Na and Ca zeolites synthesized by various hydrothermal treatments of fly ash. Adv Civil Eng Mater 4:131–143

    CAS  Google Scholar 

  34. Koshy N, Singh DN (2016) Textural alterations in coal fly ash due to alkali activation. J Mater Civ Eng 28:04016126

    Article  Google Scholar 

  35. Kocherginsky NM, Zhang YK, Stucki JW (2002) D2EHPA based strontium removal from strongly alkaline nuclear waste. Desalination 144:267–272

    Article  CAS  Google Scholar 

  36. Aguila B, Banerjee D, Nie Z, Shin Y, Ma S, Thallapally PK (2016) Selective removal of cesium and strontium using porous frameworks from high level nuclear waste. Chem Commun 52:5940–5942

    Article  CAS  Google Scholar 

  37. Merceille A, Weinzaepfel E, Barré Y, Grandjean A (2012) The sorption behaviour of synthetic sodium nonatitanate and zeolite A for removing radioactive strontium from aqueous wastes. Sep Purif Technol 96:81–88

    Article  CAS  Google Scholar 

  38. Jha B, Koshy N, Singh DN (2014) Establishing two-stage interaction between fly ash and NaOH by X-ray and infrared analyses. Front Environ Sci Eng 9:216–221

    Article  Google Scholar 

  39. Hong SY, Glasser FP (2002) Alkali sorption by C-S-H and C-A-S-H gels: part II. Role of alumina. Cem Concr Res 32:1101–1111

    Article  CAS  Google Scholar 

  40. Wallace SH, Shaw S, Morris K, Small JS, Burke IT (2013) Alteration of sediments by hyperalkaline k-rich cement leachate: implications for strontium adsorption and incorporation. Environ Sci Technol 47:3694–3700

    Article  CAS  Google Scholar 

  41. Václavíková M, Vitale K, Gallios GP, Ivanicová L (2010) Water treatment technologies for the removal of high-toxicity pollutants, vol 49. Springer, Cham

    Book  Google Scholar 

  42. Pathak P, Sharma S (2018) Sorption isotherms, kinetics, and thermodynamics of contaminants in Indian soils. J Environ Eng 24:04018109

    Article  Google Scholar 

  43. Hong HJ, Ryu J, Park IS, Ryu T, Chung KS, Kim BG (2016) Investigation of the strontium (Sr(II)) adsorption of an alginate microsphere as a low-cost adsorbent for removal and recovery from seawater. J Environ Manag 165:263–270

    Article  CAS  Google Scholar 

  44. Ryu J, Kim S, Hong HJ, Hong J, Kim M, Ryu T, Park IS, Chung KS, Jang JS, Kim BG (2016) Strontium ion (Sr2+) separation from seawater by hydrothermally structured titanate nanotubes: removal vs. recovery. Chem Eng J 304:503–510

    Article  CAS  Google Scholar 

  45. Jeon C (2016) Removal of cesium ions from aqueous solutions using immobilized nickel hexacyanoferrate-sericite beads in the batch and continuous processes. J Ind Eng Chem 40:93–98

    Article  CAS  Google Scholar 

  46. Munthali MW, Johan E, Aono H, Matsue N (2015) Cs+ and Sr2+ adsorption selectivity of zeolites in relation to radioactive decontamination. J Asian Ceramic Soc 3:245–250

    Article  Google Scholar 

  47. Baker RW (2004) Membrane technology and application. Wiley, Hoboken

    Book  Google Scholar 

  48. Ahmed F, Lalia BS, Kochkodan V, Hilal N, Hashaikeh R (2016) Electrically conductive polymeric membranes for fouling prevention and detection: a review. Desalination 391:1–15

    Article  CAS  Google Scholar 

  49. Judd S (2010) The MBR book: principles and applications of membrane bioreactors for water and wastewater treatment. Elsevier, Amsterdam

    Google Scholar 

  50. Gallucci F, Basile A, Hai FI (2011) Introduction – a review of membrane reactors. In: Basil A, Gallucci F (eds) Membranes for membrane reactors: preparation, optimization and selection. Wiley, Hoboken, pp 1–61

    Google Scholar 

  51. Weerasekara NA, Choo KH, Choi SJ (2013) Metal oxide enhanced microfiltration for the selective removal of Co and Sr ions from nuclear laundry wastewater. J Memb Sci 447:87–95

    Article  CAS  Google Scholar 

  52. Ang WL, Mohammad AW, Hilal N, Leo CP (2015) A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants. Desalination 363:2–18

    Article  CAS  Google Scholar 

  53. Drioli E, Curcio E, di Profio G, Macedonio F, Criscuoli A (2006) Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination: energy, exergy and costs analysis. Chem Eng Res Des 84:209–220

    Article  CAS  Google Scholar 

  54. Chu Z, Liu J, Han C (2015) Removal of strontium ions from aqueous solution using hybrid membranes: kinetics and thermodynamics. Chin J Chem Eng 23:1620–1626

    Article  CAS  Google Scholar 

  55. Ding S, Yang Y, Li C, Huang H, Hou LA (2016) The effects of organic fouling on the removal of radionuclides by reverse osmosis membranes. Water Res 95:174–184

    Article  CAS  Google Scholar 

  56. Divakaran S, Ponraju D, Varughese S, Swaminathan T (2018) Parametric studies for strontium separation and volume reduction of a simulated nuclear waste solution. Sep Sci Technol 53:1732–1740

    Article  CAS  Google Scholar 

  57. Obata S, Saiki K, Taniguchi T, Ihara T, Kitamura Y, Matsumoto Y (2015) Graphene oxide: a fertile nanosheet for various applications. J Phys Soc Jpn 84:121012

    Article  Google Scholar 

  58. Ma J, Ping D, Dong X (2017) Recent developments of graphene oxide-based membranes: a review. Membranes 7:52

    Article  Google Scholar 

  59. Zhao X, Su Y, Liu Y, Li Y, Jiang Z (2016) Free-standing graphene oxide-palygorskite nanohybrid membrane for oil/water separation. ACS Appl Mater Interfaces 8:8247–8256

    Article  CAS  Google Scholar 

  60. Jia Z, Wang Y, Shi W, Wang J (2016) Diamines cross-linked graphene oxide free-standing membranes for ion dialysis separation. J Membr Sci 520:139–144

    Article  CAS  Google Scholar 

  61. Cotet LC, Magyari K, Todea M, Dudescu MC, Danciu V, Baia L (2017) Versatile self-assembled graphene oxide membranes obtained under ambient conditions by using a water-ethanol suspension. J Mater Chem A 5:2132–2142

    Article  CAS  Google Scholar 

  62. Shannon M, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310

    Article  CAS  Google Scholar 

  63. Abu-Zeid MAER, Zhang Y, Dong H, Zhang L, Chen HL, Hou L (2015) A comprehensive review of vacuum membrane distillation technique. Desalination 356:1–14

    Article  CAS  Google Scholar 

  64. Jia F, Li J, Wang J, Sun Y (2017) Removal of strontium ions from simulated radioactive wastewater by vacuum membrane distillation. Ann Nucl Energy 103:363–368

    Article  CAS  Google Scholar 

  65. Mericq JP, Laborie S, Cabassud C (2010) Vacuum membrane distillation of seawater reverse osmosis brines. Water Resour 44:5260–5273

    CAS  Google Scholar 

  66. Drioli E, Criscuoli A, Curcio E (2002) Integrated membrane operations for seawater desalination. Desalination 147:77–81

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nevin Koshy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koshy, N., Pathak, P. (2020). Removal of Strontium by Physicochemical Adsorptions and Ion Exchange Methods. In: Pathak, P., Gupta, D. (eds) Strontium Contamination in the Environment. The Handbook of Environmental Chemistry, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-030-15314-4_10

Download citation

Publish with us

Policies and ethics