Skip to main content

Conventional Breeding of Cultivated Citrus Varieties

  • Chapter
  • First Online:
The Citrus Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Citrus species are among the world’s most widely grown commercial crops with hundreds of cultivated varieties, some of which with exclusively local importance. Citrus breeding programs concern different species and hybrids, also triploids, such in the case of the development of new mandarins and mandarin-like varieties and, on a smaller scale, the development of new grapefruit-like cultivars with unique fruit-quality traits and the creation of seedlessness. An increasing interest is paid also to the qualitative traits of the fruit and to its nutraceutical properties. So in Italy, and more recently in other citrus regions, the development of new pigmented genotypes, among oranges and mandarin hybrids is a high priority goal of breeding programs. The interest for lemon breeding is currently poor since there are no active large-scale conventional breeding projects. However, in some countries like Italy, Turkey, Greece, the development of new varieties resistant to mal secco disease is of pivotal importance. In Citrus, conventional breeding is hampered by several reproductive biological features, including apomixis, male and female partial sterility, cross- and self-incompatibility, high level of heterozygosity and long juvenile period. However many breeding programs are currently developed in most of the citrus producing countries in order to face different problems and to release novel varieties to accomplish the consumer request. Both conventional and molecular breeding approaches are used with an increasing importance paid to the use of biotechnological tools for marker-assisted selection and for gene function discovery in order to speed up the obtainment of new varieties. In the present contribution, we will discuss the most important achievements for citrus varieties genetic improvement, describing traditional and innovative approaches, and the main results so far achieved for important traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleza P, Cuenca J, Juárez J, Navarro L, Ollitrault P (2016) Inheritance in doubled-diploid clementine and comparative study with SDR unreduced gametes of diploid clementine. Plant Cell Rep 35:1573–1586

    Article  CAS  PubMed  Google Scholar 

  • Aleza P, Cuenca J, Juárez J, Pina JA, Navarro L (2010a) ‘Garbı’ mandarin: a new late maturing triploid hybrid. HortScience 45:139–141

    Article  Google Scholar 

  • Aleza P, Juárez J, Ollitrault P, Navarro L (2010b) Polyembryony in non-apomictic citrus genotypes. Ann Bot 106:533–545

    Article  PubMed  PubMed Central  Google Scholar 

  • Aleza P, Juárez J, Hernández M, Ollitrault P, Navarro L (2012) Implementation of extensive citrus triploid breeding programs based on 4x × 2x sexual hybridizations. Tree Genet Genom 8:1293–1306

    Article  Google Scholar 

  • Alquezar B, Rodrigo MJ, Zacarias L (2008) Carotenoid biosynthesis and their regulation in citrus fruits. In: Benkeblia N, Tennant P (eds) Tree and forestry science and biotechnology. Global Science Books, Isleworth, pp 23–35

    Google Scholar 

  • Alquézar B, Rodríguez A, de la Peña M, Peña L (2017) Genomic analysis of terpene synthase family and functional characterization of seven sesquiterpene synthases from Citrus sinensis. Front Plant Sci 8:1481

    Article  PubMed  PubMed Central  Google Scholar 

  • Barret HC, Rhodes AM (1976) A numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives. Syst Bot 1:105–136

    Article  Google Scholar 

  • Batygina TB, Vinogradova GY (2007) Phenomenon of polyembryony. Genetic heterogenity of seeds. Russ J Dev Biol 38:126–151

    Article  Google Scholar 

  • Benjamin G, Tietel Z, Porat R (2013) Effects of rootstock/scion combinations on the flavor of citrus fruit. J Agric Food Chem 61:11286–11294

    Article  CAS  PubMed  Google Scholar 

  • Blaustein RA, Lorca GL, Teplitski M (2018) Challenges for managing Candidatus liberibacter spp. (huanglongbing disease pathogen): current control measures and future directions. Phytopathology 108:424–435

    Article  PubMed  Google Scholar 

  • Bordignon R, Medina-Filho HP, Siqueira WJ, Teófilo-Sobrinho J (2004) The genetics of tolerance to tristeza disease in citrus rootstocks. Genetic Mol Biol 27:199–206

    Article  Google Scholar 

  • Broertjes C, Van Harten AM (1988) Applied mutation breeding for vegetatively propagated crops. In: Developments in crop science, vol 12. Elsevier, Amsterdam

    Google Scholar 

  • Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P et al (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24:1242–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butelli E, Garcia-Lor A, Licciardello C, Las Casas G, Hill L, Recupero GR, Keremane ML, Ramadugu C, Krueger R, Xu Q, Deng X (2017) Changes in anthocyanin production during domestication of Citrus. Plant Physiol 173(4):2225–2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cambra M, Gorris MT, Marroquın C, Román MP, Olmos A, Martınez MC et al (2000) Incidence and epidemiology of citrus tristeza virus in the Valencian community of Spain. Virus Res 71:85–95

    Article  CAS  PubMed  Google Scholar 

  • Caruso M, Ferlito F, Licciardello C, Allegra M, Strano MC, Di Silvestro S et al (2016) Pomological diversity of the Italian blood orange germplasm. Sci Hortic 213:331–339

    Article  Google Scholar 

  • Chen C, Cancalon P, Haun C, Gmitter JF (2011) Characterization of furanocoumarin profile and inheritance toward selection of low-furanocoumarin seedless grapefruit cultivars. J Am Soc Hort Sci 136:358–363

    Article  CAS  Google Scholar 

  • Cohen E (1999) Problems unique in postharvest handling of mandarin varieties. Int J Trop Plant Dis 17:143–163

    Google Scholar 

  • Cohen E, Shalom Y, Rosenberger I (1990) Postharvest ethanol buildup and off-flavor in ‘Murcott’ tangerine fruits. J Am Soc Hort Sci 115:775–778

    Article  CAS  Google Scholar 

  • Cuenca J, Garcia-Lor A, Navarro L, Aleza P (2018) Citrus genetics and breeding. In: Advances in plant breeding strategies: Fruit. https://doi.org/10.1007/978-3-319-91944-7_11

    Chapter  Google Scholar 

  • Davis PL, Chace WG, Cubbedge RH (1967) Factors affecting internal oxygen and carbon dioxide concentration of citrus fruits. HortScience 2:168–169

    Google Scholar 

  • Distefano G, Gentile A, Herrero M (2011) Pollen–pistil interactions and early fruiting in parthenocarpic citrus. Ann Bot 108(3):499–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dugrand-Judek A, Olry A, Hehn A, Costantino G, Ollitrault P, Froelicher Y et al (2015) The distribution of coumarins and furanocoumarins in citrus species closely matches citrus phylogeny and reflects the organization of biosynthetic pathways. PLoS ONE. https://doi.org/10.1371/journal.pone.0142757

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckert JW, Eaks IL (1989) Postharvest disorders and diseases of citrus fruits. In: Reuther W, Calavan EC, Carman GE (eds) The citrus industry. University of California, Berkeley, pp 179–255

    Google Scholar 

  • Erickson LC (1968) The general physiology of citrus. In: Reuther W, Batchelor LD, Webber HJ (eds) The citrus industry, vol II, 2nd edn. University of California, Berkeley, pp 86–126

    Google Scholar 

  • Fidel Y, Carmeli-Weissberg M, Yaniv Y, Shaya F, Dai N, Raveh E et al (2016) Breeding and analysis of two new grapefruit-like varieties with low furanocoumarin content. Food Nutr Sci 7:90–101

    CAS  Google Scholar 

  • Fujii H, Kita M, Shimada T, Endo T, Omura M (2003) Expressed sequence tags from citrus albedo at the initiation stage of rind peeling. Bull Natl Inst Fruit Tree Sci 2:127–144

    Google Scholar 

  • Gentile A, Deng Z, La Malfa S, Distefano G, Domina F, Vitale A, Polizzi G, Lorito M, Tribulato E (2007) Enhanced resistance to Phoma tracheiphila and Botrytis cinerea in transgenic lemon plants expressing a Trichoderma harzianum chitinase gene. Plant Breed 126(2):146–151

    Article  CAS  Google Scholar 

  • Girennavar B, Jayaprakasha GK, Patil BS (2007) Potent inhibition of human cytochrome P450 3A4, 2D6, and 2C9 isoenzymes by grapefruit juice and its furocoumarins. J Food Sci 72:C417–C421

    Article  CAS  PubMed  Google Scholar 

  • Gmitter FG, Chen C, Wei X, Yu Y, Yu Q (2016) New genetic tools to improve citrus fruit quality and drive consumer demand. Acta Hort 1127:199–202

    Article  Google Scholar 

  • Goff SA, Klee HJ (2006) Plant volatile compounds: sensory cues for health and nutritional value? Science 311:815–819

    Article  CAS  PubMed  Google Scholar 

  • Goldenberg L, Yaniv Y, Choi HJ, Doron-Faigenboim A, Carmi N, Porat R (2016) Elucidating the biochemical factors governing off-flavor perception in mandarins. Postharvest Biol Technol 120:167–179

    Article  CAS  Google Scholar 

  • Goldenberg L, Yaniv Y, Doron-Faigenboim A, Carmi N, Porat R (2015a) Diversity among mandarin varieties and natural sub-groups in aroma volatiles compositions. J Sci Food Agric 96:57–65

    Article  PubMed  CAS  Google Scholar 

  • Goldenberg L, Yaniv Y, Kaplunov T, Doron-Faigenboim A, Carmi N, Porat R (2015b) Diversity in sensory quality and determining factors influencing mandarin flavor liking. J Food Sci 80:S418–S425

    Article  CAS  PubMed  Google Scholar 

  • Goldenberg L, Yaniv Y, Porat R, Carmi N (2014) Effects of gamma-irradiation mutagenesis for induction of seedlessness on the quality of mandarin fruit. Food Nutr Sci 5:943–952

    Google Scholar 

  • Goldenberg L, Yaniv Y, Porat R, Carmi N (2018) Mandarin’s fruit quality: a review. J Sci Food Agric 98:18–26

    Article  CAS  PubMed  Google Scholar 

  • Goodner KL, Rouseff RL, Hofsommer HJ (2001) Orange, mandarin, and hybrid classification using multivariate statistics based on carotenoid profiles. J Agric Food Chem 49:1146–1150

    Article  CAS  PubMed  Google Scholar 

  • Goto S, Yoshioka T, Ohta S, Kita M, Hamada H, Shimizu T (2016) Segregation and heritability of male sterility in populations derived from progeny of satsuma mandarin. PLoS ONE 11(9):e0162408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gross J (1987) Pigments in fruits. In: Schweigert BS (ed) Food science and technology, a series of monographs. Academic Press, Orlando

    Google Scholar 

  • Grosser JW (2004) Applications of somatic hybridization and cybridization in crop improvement, with citrus as a model. Vitro Cell Dev Biol Plant 40:17A

    Google Scholar 

  • Gulsen O, Uzun A, Pala H, Canihos E, Kafa G (2007) Development of seedless and Mal Secco tolerant mutant lemons through budwood irradiation. Sci Hortic 112(2):184–190

    Article  Google Scholar 

  • Hodgson RW (1967) Horticultural varieties of citrus. In: Reuther W, Webber HJ, Batchler LD (eds) The citrus industry. University of California, Berkeley, pp 431–588

    Google Scholar 

  • Iglesias DJ, Cercós M, Colmenero-Flores JM, Naranjo MA, Ríos G, Carrera E et al (2007) Physiology of citrus fruiting. Braz J Plant Physiol 19:333–362

    Article  CAS  Google Scholar 

  • Jia H, Zhang Y, Orbović V, Xu J, White FF, Jones JB et al (2017) Genome editing of the disease susceptibility gene Cs LOB 1 in citrus confers resistance to citrus canker. Plant Biotechnol J 15:817–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kader AA, Arpaia ML (2002) Postharvest handling systems: subtropical fruits. In: Kader AA (ed) Postharvest technology of horticultural crops. University of California, Oakland, pp 375–384

    Google Scholar 

  • Kita M, Hisada S, Endo-Inagaki T, Omura M, Moriguchi T (2000) Changes in the levels of mRNAs for putative cell growth-related genes in the albedo and flavedo during citrus fruit development. Plant Cell Rep 19:582–587

    Article  CAS  PubMed  Google Scholar 

  • Li DD, Shi W, Deng XX (2002) Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimeric ribonuclease gene. Plant Cell Rep 21:153–156

    Article  CAS  Google Scholar 

  • Ling P, Duncan LW, Deng Z, Dunn D, Xu X, Huang S et al (2000) Inheritance of citrus nematode resistance and its linkage with molecular markers. Theor Appl Genet 101:1010–1017

    Article  Google Scholar 

  • Ma G, Zhang L, Matsuta A, Matsutani K, Yamawaki K, Yahata M et al (2013) Enzymatic formation of beta-citraurin from β-cryptoxanthin and zeaxanthin by carotenoid cleavage dioxygenase 4 in the flavedo of citrus fruit. Plant Physiol 163:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miles GP, Stover E, Ramadugu C, Keremane ML, Lee RF (2017) Apparent tolerance to huanglongbing in citrus and citrus-related germplasm. HortScience 52:31–39

    Article  Google Scholar 

  • Minamikawa MF, Nonaka K, Kaminuma E, Kajiya-Kanegae H, Onogi A, Goto S et al (2017) Genome-wide association study and genomic prediction in citrus: potential of genomics-assisted breeding for fruit quality traits. Sci Rep 7:4721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miyazaki T, Plotto A, Baldwin EA, Reyes-De-Corcuera JI, Gmitter FG (2012) Aroma characterization of tangerine hybrids by gas-chromatography-olfactometry and sensory evaluation. J Sci Food Agric 92:727–735

    Article  CAS  PubMed  Google Scholar 

  • Moore GA (2001) Oranges and lemons: clues to the taxonomy of Citrus from molecular markers. Trends Genet 17:536–540

    Article  CAS  PubMed  Google Scholar 

  • Nicolosi E, Deng ZN, Gentile A, La Malfa S, Continella G, Tribulato E (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166

    Article  CAS  Google Scholar 

  • Nigro F, Ippolito A, Salerno MG (2015) Searching for citrus rootstocks resistant to Mal Secco disease: a review. Acta Hort 1065:987–991

    Article  Google Scholar 

  • Nishikawa F, Iwasaki M, Fukamachi H, Nonaka K, Imai A, Takishita F et al (2012) Fruit bearing suppresses citrus FLOWERING LOCUS T expression in vegetative shoots of satsuma mandarin (Citrus unshiu Marc.). J Jpn Soc Hortic Sci 81:48–53

    Article  CAS  Google Scholar 

  • Obenland D, Collin S, Mackey B, Sievert J, Arpaia ML (2011) Storage temperature and time influences sensory quality of mandarins by altering soluble solids, acidity and aroma volatile composition. Postharvest Biol Tech 59:187–193

    Article  CAS  Google Scholar 

  • Ollitrault P, Navarro L (2012) Orange, in Fruit Breeding, Handbook of Plant Breeding 8. https://doi.org/10.1007/978/1-4419-0763-9_16

  • Oueslati A, Salhi-Hannachi A, Luro F, Vignes H, Mournet P, Ollitrault P (2017) Genotyping by sequencing reveals the interspecific C. maxima/C. reticulata admixture along the genomes of modern citrus varieties of mandarins, tangors, tangelos, orangelos and grapefruits. PLoS One. https://doi.org/10.1371/journal.pone.0185618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Polat I (2018) Advanced innovative tools in lemon (Citrus limon L.) breeding. In: Advances in plant breeding strategies: fruits. Springer, Cham, pp 437–463

    Chapter  Google Scholar 

  • Qin Y, Xu C, Ye Z, Teixeira Da Silva JA, Hu G (2015) Seedless mechanism of a new citrus cultivar ‘Huami Wuhegonggan’ (Citrus sinensis × C. reticulata). Pak J Bot 47:2369–2378

    CAS  Google Scholar 

  • Rapisarda P, Bellomo SE, Intrigliolo F (2001) Anthocyanins in blood oranges: composition and biological activity. Recent research developments in agricultural & food chemistry, pp 217–230

    Google Scholar 

  • Rapisarda P, Bellomo SE, Fabroni S, Russo G (2008) Juice quality of two new mandarin-like hybrids (Citrus clementina hort ex tan × Citrus sinensis L Osbeck) containing anthocyanins. J Agric Food Chem 56:2074–2078

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo MJ, Alquézar B, Alós E, Medina V, Carmona L, Bruno M et al (2013) A novel carotenoid cleavage activity involved in the biosynthesis of citrus fruit-specific apocarotenoid pigments. J Exp Bot 64:4461–4478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roose ML, Williams TE (2007) Mandarin tree named ‘Tango’. US Patent P17863P3, 10 July 2007

    Google Scholar 

  • Rouseff RL, Perez-Cacho PR, Jabalpurwala F (2009) Historical review of citrus flavor research during the past 100 years. J Agric Food Chem 57:8115–8124

    Article  CAS  PubMed  Google Scholar 

  • Russo G, Reforgiato Recupero G, Recupero S (2004) New triploid hybrids of Citrus in Italy. Proc Int Soc Citric 399:401

    Google Scholar 

  • Russo G, Reforgiato Recupero G, Recupero S, Pietropaolo D (2015) ‘Sweet Sicily’ and ‘Early Sicily’, two new triploids from the program of CRA-Research Centre of Citriculture and Mediterranean Crops. Acta Hort 1065:215–221

    Article  Google Scholar 

  • Sala JM (1998) Involvement of oxidative stress in chilling injury in cold-stored mandarin fruits. Postharvest Biol Technol 13:255–261

    Article  CAS  Google Scholar 

  • Scora RW (1975) On the history and origin of citrus. Bull Torrey Bot Club 102(6):369–375

    Article  Google Scholar 

  • Shalom L, Samuels S, Zur N, Shlizerman L, Zemach H, Weissberg M et al (2012) Alternate bearing in citrus: changes in the expression of flowering control genes and in global gene expression in on-versus off-crop trees. PLoS ONE 7:e46930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiegel-Roy P, Goldschmidt EE (1996) Biology of citrus. Cambridge University Press, New York, pp 155–175

    Book  Google Scholar 

  • Stover E, Inch S, Richardson ML, Hall DG (2016) Conventional citrus of some scion/rootstock combinations show field tolerance under high huanglongbing disease pressure. HortScience 51:127–132

    Article  Google Scholar 

  • Tietel Z, Bar E, Lewinsohn E, Feldmesser E, Fallik E, Porat R (2010) Effects of wax coatings and postharvest storage on sensory quality and aroma volatiles composition of ‘Mor’ mandarins. J Sci Food Agric 90:995–1007

    CAS  PubMed  Google Scholar 

  • Tietel Z, Plotto A, Fallik E, Lewinsohn E, Porat R (2011) Taste and aroma of fresh and stored mandarins. J Sci Food Agric 91:14–23

    Article  CAS  PubMed  Google Scholar 

  • Tribulato E, La Rosa G (1993) Primosole e Simeto: Due nuovi ibridi di mandarino. Italus Hortus 12:125

    Google Scholar 

  • United States Department of Agriculture (USDA) (2018) Citrus: world markets and trade [online]. https://apps.fas.usda.gov/psdonline/circulars/citrus.pdf. Accessed 25 June 2018

  • Vardi A, Levin I, Carmi N (2008) Induction of seedlessness in citrus: from classical techniques to emerging biotechnological approaches. J Am Soc Hort Sci 133:117–126

    Article  Google Scholar 

  • Vardi A, Spiegel-Roy P, Frydman-Shani A, Elchanati A, Neumann H (2003) Citrus tree named ‘Orri’. US Patent P13616P2, 4 March 2003

    Google Scholar 

  • Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F (2014) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol 32:656–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu GA, Terol J, Ibanez V, López-García A, Pérez-Román E, Borredá C et al (2018) Genomics of the origin and evolution of citrus. Nature 554:311–316

    Article  CAS  Google Scholar 

  • Yu Y, Bai J, Chen C, Plotto A, Baldwin EA, Gmitter FG (2018) Comparative analysis of juice volatiles in selected mandarins, mandarin relatives and other citrus genotypes. J Sci Food Agric 98:1124–1131

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Bai J, Chen C, Plotto A, Yu Q, Baldwin EA et al (2017) Identification of QTLs controlling aroma volatiles using a ‘Fortune’ × ‘Murcott’ (Citrus reticulata) population. BMC Genom 18:646

    Article  CAS  Google Scholar 

  • Yu Y, Chen C, Gmitter FG (2016) QTL mapping of mandarin (Citrus reticulata) fruit characters using high-throughput SNP markers. Tree Genet Genom 12:77

    Article  Google Scholar 

  • Zhang H, Xie Y, Liu C, Chen S, Hua S, Xie Z et al (2017) Comprehensive comparative analysis of volatile compounds in citrus fruits of different species. Food Chem 230:316–326

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Manuel Talon and Dr. Gloria A. Moore for permitting the presentation of Figs. 4.1 and 4.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nir Carmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raveh, E., Goldenberg, L., Porat, R., Carmi, N., Gentile, A., La Malfa, S. (2020). Conventional Breeding of Cultivated Citrus Varieties. In: Gentile, A., La Malfa, S., Deng, Z. (eds) The Citrus Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-15308-3_4

Download citation

Publish with us

Policies and ethics