Skip to main content

Learning Fuzzy Measures

  • Chapter
  • First Online:
Discrete Fuzzy Measures

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 382))

Abstract

This chapter is a key contribution of this work in which various computational approaches to learning fuzzy measures are described. The learning problem is framed from the perspective of data fitting, where we aim to define a model that interpolates or approximates a set of observed or user-specified instances. Fitting is performed with respect to different metrics, and by solving different convex and non-convex optimisation problems. The computational complexity of fuzzy measures is addressed by using simplifying assumptions, in particular the notion of k-order fuzzy measures and the software packages implementing the presented fitting approaches are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at https://github.com/murillojavieriv/khlms.

References

  1. Anderson, D., Keller, J., Havens, T.: Learning fuzzy-valued fuzzy measures for the fuzzy-valued Sugeno fuzzy integral. In: Lecture Notes in Artificial Intelligence, vol. 6178, pp. 502–511 (2010)

    Google Scholar 

  2. Angilella, S., Greco, S., Matarazzo, B.: Non-additive robust ordinal regression: a multiple criteria decision model based on the Choquet integral. Eur. J. Oper. Res. 201(1), 277–288 (2010)

    Google Scholar 

  3. Angilella, S., et al.: Non additive robust ordinal regression for urban and territorial planning: an application for siting an urban waste landfill. Ann. Oper. Res. 245(1–2), 427–456 (2016)

    Google Scholar 

  4. Beliakov, G.: Construction of aggregation functions from data using linear programming. Fuzzy Sets Syst. 160, 65–75 (2009)

    Google Scholar 

  5. Beliakov, G.: FMtools package, version 3.0. (2018). http://www.deakin.edu.au/~gleb/fmtools.html

  6. Beliakov, G.: Rfmtool package, version 3. (2018). https://CRAN.R-project.org/package=Rfmtool

  7. Beliakov, G., Bustince, H., Calvo, T.: A Practical Guide to Averaging Functions. Springer, Berlin (2016)

    Google Scholar 

  8. Beliakov, G., Gagolewski, M., James, S.: Learning Sugeno integral fuzzy measures by minimizing the maximum and median error. In: Under Review (2019)

    Google Scholar 

  9. Beliakov, G., James, S., Li, G.: Learning Choquet-integralbased metrics for semisupervised clustering. IEEE Trans. Fuzzy Syst. 19, 562–574 (2011)

    Google Scholar 

  10. Beliakov, G., Wu, J.-Z.: Learning fuzzy measures from data: simplifications and optimisation strategies. In: Under Review (2018)

    Google Scholar 

  11. Beliakov, G., Wu, J.-Z.: Learning K-maxitive fuzzy measures from data by mixed integer programming. In: Under Review (2018)

    Google Scholar 

  12. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  13. Chateauneuf, A., Jaffray, J.Y.: Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Math. Soc. Sci. 17, 263–283 (1989)

    Google Scholar 

  14. Corrente, S., Greco, S., Ishizaka, A.: Combining analytical hierarchy process and Choquet integral within non-additive robust ordinal regression. Omega 61, 2–18 (2016)

    Google Scholar 

  15. Corrente, S., Greco, S., Kadziński, M., Słowiński, R.: Robust ordinal regression in preference learning and ranking. Mach. Learn. 93(2–3), 381–422 (2013)

    Google Scholar 

  16. Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, New York (2000)

    Google Scholar 

  17. Gagolewski, M., James, S.: Fitting symmetric fuzzy measures for discrete Sugeno integration. Advances in Intelligent Systems and Computing, vol. 642, pp. 104–116. Springer, Berlin (2018)

    Google Scholar 

  18. Gagolewski, M., James, S., Beliakov, G.: Supervised learning to aggregate data with the Sugeno integral. IEEE Trans. Fuzzy Syst. (2019). Under review

    Google Scholar 

  19. Gertz, E.M., Wright, S.J.: Object-oriented software for quadratic programming. ACM Trans. Math. Softw. 29, 58–81 (2003)

    Google Scholar 

  20. Grabisch, M.: A new algorithm for identifying fuzzy measures and its application to pattern recognition. In: 1995 Fuzzy Systems, International Joint Conference of the Fourth IEEE Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium, 1995 Proceedings of IEEE International, pp. 145–150. IEEE (1995)

    Google Scholar 

  21. Grabisch, M., Kojadinovic, I., Meyer, P.: A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: applications of the kappalab R package. Eur. J. Oper. Res. 186(2), 766–785 (2008)

    Google Scholar 

  22. Grabisch, M., Kojadinovic, I., Meyer, P.: Kappalab package, version 0.4. (2015). https://CRAN.R-project.org/package=kappalab

  23. Grabisch, M., Murofushi, T., Sugeno, M. (eds.): Fuzzy Measures and Integrals. Theory and Applications. Physica-Verlag, Heidelberg (2000)

    Google Scholar 

  24. Grabisch, M., Nicolas, J.-M.: Classification by fuzzy integral: performance and tests. Fuzzy Sets Syst. 65(2), 255–271 (1994)

    Google Scholar 

  25. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming (2017). http://vxr.com/cvx/

  26. Greco, S., Mousseau, V., Słowiński, R.: Robust ordinal regression for value functions handling interacting criteria. Eur. J. Oper. Res. 239(3), 711–730 (2014)

    Google Scholar 

  27. Hllermeier, E., Tehrani, A.F.: Efficient Learning of Classifiers Based on the 2-Additive Choquet Integral, pp. 17–29. Springer, Berlin (2013)

    Google Scholar 

  28. Kojadinovic, I.: Minimum variance capacity identification. Eur. J. Oper. Res. 177(2), 498–514 (2007)

    Google Scholar 

  29. Kojadinovic, I., Grabisch, M.: Non additive measure and integral manipulation functions, R package version 0.2. (2005)

    Google Scholar 

  30. Kojadinovic, I., Marichal, J.-L.: Entropy of bi-capacities. Eur. J. Oper. Res. 178, 168–184 (2007)

    Google Scholar 

  31. Kojadinovic, I., Marichal, J.-L., Roubens, M.: An axiomatic approach to the definition of the entropy of a discrete Choquet capacity. Inf. Sci. 172, 131–153 (2005)

    Google Scholar 

  32. Marichal, J.-L.: Behavioral analysis of aggregation in multicriteria decision aid. In: Fodor, J., De Baets, B., Perny, P. (eds.) Preferences and Decisions under Incomplete Knowledge, pp. 153–178. Physica-Verlag, Heidelberg (2000)

    Google Scholar 

  33. Marichal, J.-L.: Entropy of discrete Choquet capacities. Eur. J. Oper. Res. 137, 612–624 (2002)

    Google Scholar 

  34. Marichal, J.-L.: Tolerant or intolerant character of interacting criteria in aggregation by the Choquet integral. Eur. J. Oper. Res. 155, 771–791 (2004)

    Google Scholar 

  35. Marichal, J.-L.: K-Intolerant capacities and Choquet integrals. Eur. J. Oper. Res. 177, 1453–1468 (2007)

    Google Scholar 

  36. Marichal, J.-L., Roubens, M.: Determination of weights of interacting criteria from a reference set. Eur. J. Oper. Res. 124(3), 641–650 (2000)

    Google Scholar 

  37. Mayag, B., Grabisch, M., Labreuche, C.: A representation of preferences by the Choquet integral with respect to a 2-additive capacity. Theory Decis. 71(3), 297–324 (2011)

    Google Scholar 

  38. Meyer, P., Roubens, M.: Choice, ranking and sorting in fuzzy multiple criteria decision aid. In: Figueira, J., Greco, S., Ehrogott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 471–503. Springer, New York (2005)

    Google Scholar 

  39. Murillo, J., Guillaume, S., Bulacio, P.: K-Maxitive fuzzy measures: a scalable approach to model interactions. Fuzzy Sets Syst. 324, 33–48 (2017)

    Google Scholar 

  40. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (1999)

    Google Scholar 

  41. Prade, H., Rico, A., Serrurier, M.: Elicitation of Sugeno integrals: a version space learning perspective. Lecture Notes in Computer Science, vol. 5722, pp. 392–401. Springer, Berlin (2009)

    Google Scholar 

  42. Roubens, M.: Interaction between criteria and definition of weights in MCDA problems. In: 44th Meeting of the European Working Group Multicriteria Aid for Decisions. Brussels, Belgium (1996)

    Google Scholar 

  43. R Development Core Team. R: A language and environment for statistical computing. In: R Foundation for Statistical Computing (2011). http://www.R-project.org

  44. Tehrani, A.F., Cheng, W., Dembczynski, K., Hüllermeier, E.: Learning monotone nonlinear models using the Choquet integral. Mach. Learn. 89(1–2), 183–211 (2012)

    Google Scholar 

  45. Vu, H.Q., Beliakov, G., Li, G.: A Choquet integral toolbox and its application in customer preference analysis. Data Mining Applications with R, pp. 247–272. Elsevier, Waltham (2014)

    Google Scholar 

  46. Wu, J.-Z., Beliakov, G.: Marginal contribution representation of capacity based multicriteria decision making. In: Under Review (2018)

    Google Scholar 

  47. Wu, J.-Z., Beliakov, G.: Nonadditivity index and capacity identification method in the context of multicriteria decision making. Inf. Sci. 467, 398–406 (2018)

    Google Scholar 

  48. Wu, J.-Z., Pap, E., Szakal, A.: Two kinds of explicit preference information oriented capacity identification methods in the context of multicriteria decision analysis. Int. Trans. Oper. Res. 25, 807–830 (2018)

    Google Scholar 

  49. Wu, J.-Z., Yang, S., Zhang, Q., Ding, S.: 2-Additive capacity identification methods from multicriteria correlation preference information. IEEE Trans. Fuzzy Syst. 23(6), 2094–2106 (2015)

    Google Scholar 

  50. Wu, J.-Z., Zhang, Q.: 2-Order additive fuzzy measure identification method based on diamond pairwise comparison and maximum entropy principle. Fuzzy Optim. Decis. Mak. 9(4), 435–453 (2010)

    Google Scholar 

  51. Wu, J.-Z., Zhang, Q., Du, Q., Dong, Z.: Compromise principle based methods of identifying capacities in the framework of multicriteria decision analysis. Fuzzy Sets Syst. 246, 91–106 (2014)

    Google Scholar 

  52. Yuan, B., Klir, G.J.: Constructing fuzzy measures: a new method and its application to cluster analysis. In: Proceedings of NAFIPS’96, pp. 567–571 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleb Beliakov .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beliakov, G., James, S., Wu, JZ. (2020). Learning Fuzzy Measures. In: Discrete Fuzzy Measures. Studies in Fuzziness and Soft Computing, vol 382. Springer, Cham. https://doi.org/10.1007/978-3-030-15305-2_8

Download citation

Publish with us

Policies and ethics