Skip to main content

Introduction

  • Chapter
  • First Online:
Discrete Fuzzy Measures

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 382))

  • 398 Accesses

Abstract

The so-called fuzzy integrals, which are defined with respect to fuzzy measures, allow interaction effects between variables to be accounted for when averaging data. This chapter introduces these concepts in the framework of aggregating discrete sets of inputs. After providing rationale for the study of discrete fuzzy measures along with the basic definitions, we give a short overview of aggregation functions, their properties, and some prototypical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A set function is a function whose domain consists of all possible subsets of \(\mathcal N\). For example, for \(n=3\), a set function is specified by \(2^3=8\) values at \(\mu (\emptyset )\), \(\mu (\{1\})\), \(\mu (\{2\})\), \(\mu (\{3\})\), \(\mu (\{1,2\})\), \(\mu (\{1,3\})\), \(\mu (\{2,3\})\), \(\mu (\{1,2,3\})\).

  2. 2.

    Such an array is based on a Hasse diagram of the inclusion relation defined on the set of subsets of \(\mathcal N\).

  3. 3.

    In general, this definition applies to any set function.

  4. 4.

    The interval [0, 1] can be substituted with any interval \([a,b] \subset \mathbb {R}\) using a simple transformation.

  5. 5.

    Two vectors \(\mathbf x, \mathbf y \in [0,1]^n\) are not comparable if there exists an i such that \(x_i > y_i\) and \(j \ne i\) such that \(x_j < y_j\).

  6. 6.

    In some works like [BPC07, GMMP09] the authors use the term non-decreasing. Since there might be confusion with functions that are, for example, oscillating. We prefer to use the terms increasing and strictly increasing, see Definition 1.20.

  7. 7.

    Proof: Take any \(\mathbf {x} \in {\mathbb I}^n\), and let p, q denote the values \(p=\min (\mathbf {x}), q=\max (\mathbf {x})\). By monotonicity, \(p=f(p,p,\ldots ,p)\leqslant f(\mathbf {x})\leqslant f(q,q,\ldots ,q)=q\). Hence \(\min (\mathbf {x})\leqslant f(\mathbf {x})\leqslant \max (\mathbf {x})\). The converse: let \(\min (\mathbf {x})\leqslant f(\mathbf {x})\leqslant \max (\mathbf {x})\). By taking \(\mathbf {x}=(t,t,\ldots ,t)\), \(\min (\mathbf {x})=\max (\mathbf {x})=f(\mathbf {x})=t\), hence idempotency.

  8. 8.

    Proof: Assume f has two neutral elements e and u. Then \(u=f(e, u) =e\), therefore \(e=u\). For n variables, assume \(e<u\). By monotonicity, \(e=f(e,u,\ldots ,u,\ldots , u) \geqslant f(e,e,\ldots ,e,u,e\ldots ,e)=u\), hence we have a contradiction. The case \(e>u\) leads to a similar contradiction.

  9. 9.

    A frequently used term is bijection: a bijection is a function \(f:A\rightarrow B\), such that for every \(y \in B\) there is exactly one \(x \in A\), such that \(y=f(x)\), i.e., it defines a one-to-one correspondence between A and B. Because N is strictly monotone, it is a one-to-one function. Its range is [0,1], hence it is an onto mapping, and therefore a bijection.

  10. 10.

    Automorphism is another useful term: An automorphism is a strictly increasing bijection of an intervalonto itself \([a,b]\rightarrow [a,b]\).

  11. 11.

    A real function of n arguments is continuous if for any sequences \(\{x_{ij}\}, i=1,\ldots ,n\) such that \( \lim \limits _{j \rightarrow \infty }x_{ij}=y_i \) it holds that \(\lim \limits _{j \rightarrow \infty } f(x_{1j},\ldots x_{nj})= f(y_1,\ldots ,y_n)\). Because the domain \({\mathbb I}^n\) is a compact set, continuity is equivalent to its stronger version, uniform continuity. An aggregation function is uniformly continuous if and only if it is continuous in each argument (i.e., we can check continuity by fixing all variables but one, and checking continuity of each univariate function. However, general non-monotone functions can be continuous in each variable without being continuous).

  12. 12.

    A distance between objects x, y from a set \(\mathcal S\) is a function defined on \(\mathcal S \times \mathcal S\), whose values are non-negative real numbers, with the properties: (1) \(d(x, y)=0\) if and only if \(x=y\), (2) \(d(x,y)=d(y,x)\) (symmetry), and (3) \(d(x,z)\leqslant d(x,y)+d(y,z)\) (triangular inequality). Such a distance is called a metric.

  13. 13.

    A norm is a function f on a vector space with the properties: (1) \(f(\mathbf {x}) > 0\) for all nonzero \(\mathbf {x}\) and \(f(\mathbf {0})=0\) , (2) \(f(a \mathbf {x})=|a|f(\mathbf {x})\), and (3)\(f(\mathbf {x} + \mathbf {y}) \leqslant f(\mathbf {x})+ f(\mathbf {y})\).

  14. 14.

    I.e., it is differentiable on its entire domain, except for a subset of measure zero.

  15. 15.

    Take \(f(x_1,x_2)=\sqrt{x_1 x_2}\), which is continuous for \(x_1,x_2 \geqslant 0\), and let \(x_2=1\). \(f(t,1)=\sqrt{t}\) is continuous but not Lipschitz. To see this, let \(t=0\) and \(u>0\). Then \(|\sqrt{0}-\sqrt{u}|=\sqrt{u} > Mu=M|0-u|\), or \(u^{-\frac{1}{2}}>M\), for whatever choice of M, if we make u sufficiently small. Hence the Lipschitz condition fails.

  16. 16.

    Note the difference to the increasing ordering used for the Choquet and Sugeno integrals.

References

  1. Beliakov, G., Bustince, H., Calvo, T.: A Practical Guide to Averaging Functions. Springer, Berlin (2016)

    Book  Google Scholar 

  2. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Studies in Fuzziness and Soft Computing, vol. 221. Springer, Berlin (2007)

    MATH  Google Scholar 

  3. Bellman, R.E., Giertz, M.: On the analytic formalism of the theory of fuzzy sets. Inf. Sci. 5, 149–156 (1973)

    Article  MathSciNet  Google Scholar 

  4. Buchanan, B., Shortliffe, E.: Rule-based Expert Systems. The MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading (1984)

    Google Scholar 

  5. Bullen, P.S.: Handbook of Means and Their Inequalities. Kluwer, Dordrecht (2003)

    Book  Google Scholar 

  6. Calvo, T., Kolesárová, A., Komorníková, M., Mesiar, R.: Aggregation operators: properties, classes and construction methods. In: Calvo, T., Mayor, G., Mesiar, R. (eds.) Aggregation Operators. New Trends and Applications, pp. 3–104. Physica - Verlag, Heidelberg (2002)

    Google Scholar 

  7. Choquet, G.: Theory of Capacities. Annales de l’Institut Fourier 5, 131–295 (1953)

    Article  MathSciNet  Google Scholar 

  8. Denneberg, D.: Non-additive Measure and Integral. Kluwer, Dordrecht (1994)

    Book  Google Scholar 

  9. Dubois, D., Marichal, J.-L., Prade, H., Roubens, M., Sabbadin, R.: The use of the discrete Sugeno integral in decision making: a survey. Int. J. Uncertain., Fuzziness Knowl.-Based Syst. 9, 539–561 (2001)

    Google Scholar 

  10. Dubois, D., Prade, H.: Fuzzy Sets and Systems. Theory and Applications. Academic, New York (1980)

    MATH  Google Scholar 

  11. Dubois, D., Prade, H.: A review of fuzzy set aggregation connectives. Inf. Sci. 36, 85–121 (1985)

    Article  MathSciNet  Google Scholar 

  12. Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets. Kluwer, Boston (2000)

    Book  Google Scholar 

  13. Dubois, D., Prade, H.: On the use of aggregation operations in information fusion processes. Fuzzy Sets Syst. 142, 143–161 (2004)

    Article  MathSciNet  Google Scholar 

  14. Duda, R., Hart, P., Nilsson, N.: Subjective Bayesian methods for rule-based inference systems. In: Proceedings of the National Computer Conference (AFIPS), vol. 45, pp. 1075–1082 (1976)

    Google Scholar 

  15. Dujmovic, J.J.: Soft Computing Evaluation Logic: The LSP Decision Method and Its Applications. Wiley-IEEE Computer Society Press, Hoboken (2018)

    Book  Google Scholar 

  16. Gagolewski, M.: Data Fusion. Theory, Methods and Applications. Institute of Computer Science, Polish Academy of Sciences (2015)

    Google Scholar 

  17. Grabisch, M.: The applications of fuzzy integrals in multicriteria decision making. Eur. J. Oper. Res. 89, 445–456 (1996)

    Article  Google Scholar 

  18. Grabisch, M.: k-Order additive discrete fuzzy measures and their representation. Fuzzy Sets Syst. 92, 167–189 (1997)

    Article  MathSciNet  Google Scholar 

  19. Grabisch, M.: The interaction and Möbius representation of fuzzy measures on finite spaces, k-additive measures: a survey. In: Grabisch, M., Murofushi, T., Sugeno, M. (eds.) Fuzzy Measures and Integrals. Theory and Applications, pp. 70–93. Physica- Verlag, Heidelberg (2000)

    Google Scholar 

  20. Grabisch, M.: Set Functions, Games and Capacities in Decision Making. Springer, Berlin (2016)

    Book  Google Scholar 

  21. Grabisch, M., Kojadinovic, I., Meyer, P.: A review of methods for capacity identification in Choquet integral based multiattribute utility theory. Eur. J. Oper. Res. 186, 766–785 (2008)

    Article  Google Scholar 

  22. Grabisch, M., Labreuche, C.: To be symmetric or asymmetric? A dilemma in decision making. In: Fodor, J., De Baets, B., Perny, P. (eds.) Preferences and Decisions Under Incomplete Knowledge. Physica-Verlag, Heidelberg (2000)

    Google Scholar 

  23. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Encyclopedia of Mathematics and Its Foundations. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  24. Grabisch, M., Murofushi, T., Sugeno, M. (eds.): Fuzzy Measures and Integrals. Theory and Applications. Physica - Verlag, Heidelberg (2000)

    MATH  Google Scholar 

  25. James, S.: An Introduction to Data Analysis using Aggregation Functions in R. Springer Nature, Cham (2016)

    Book  Google Scholar 

  26. Marichal, J.-L.: On Choquet and Sugeno integrals as aggregation functions. In: Grabisch, M., Murofushi, T., Sugeno, M., (eds.) Fuzzy Measures and Integrals. Theory and Applications, pp. 247–272. Physica-Verlag, Heidelberg (2000)

    Google Scholar 

  27. Marichal, J.-L.: On Sugeno integral as an aggregation function. Fuzzy Sets Syst. 114, 347–365 (2000)

    Article  MathSciNet  Google Scholar 

  28. Marichal, J.-L.: Aggregation of interacting criteria by means of the discrete Choquet integral. In: Calvo, T., Mayor, G., Mesiar, R. (eds.) Aggregation Operators. New Trends and Applications, pp. 224–244. Physica-Verlag, Heidelberg (2002)

    Google Scholar 

  29. Marichal, J.-L., Teheux, B.: Generalizations and variants of associativity for aggregation functions. In: Proceedings of the 8th International Summer School on Aggregation Operators, pp. 17–22. University of Silesia, Katowice, Poland (2015)

    Google Scholar 

  30. Mayor, G., Calvo, T.: Extended aggregation functions. In: IFSA’97, vol. 1, pp. 281–285. Prague (1997)

    Google Scholar 

  31. Menger, K.: Statistical metrics. Procs. Nat. Acad. Sci. U.S.A. 37, 535–537 (1942)

    Article  Google Scholar 

  32. Pap, E. (ed.): Handbook of Measure Theory. North Holland/Elsevier, Amsterdam (2002)

    MATH  Google Scholar 

  33. Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York (1983)

    MATH  Google Scholar 

  34. Torra, V., Narukawa, Y.: Modeling Decisions. Information Fusion and Aggregation Operators. Springer, Berlin (2007)

    MATH  Google Scholar 

  35. Torra, V., Narukawa, Y., Sugeno, M. (eds.): Non-Additive Measures. Springer, Berlin (2014)

    MATH  Google Scholar 

  36. Trillas, E.: Sobre funciones de negación en la teoría de los subconjuntos difusos. In: Barro, S., et al. (eds) Stochastica III (1979), 47–59 (in Spanish) Reprinted (English version) in Advances of Fuzzy Logic, Universidad de Santiago de Compostela 31–43 (1998)

    Google Scholar 

  37. VTAC. Study Groupings. In: Victorian Tertiary Admissions Centre (2012). Accessed 16 Dec 2018. http://www.vtac.edu.au/results-offers/atar-explained/studygroupings.html

  38. Wang, Z., Klir, G.J.: Fuzzy Measure Theory. Plenum Press, New York (1992)

    Book  Google Scholar 

  39. Wang, Z., Klir, G.J.: Generalized Measure Theory. Springer, New York (2009)

    Book  Google Scholar 

  40. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1988)

    Article  Google Scholar 

  41. Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80, 111–120 (1996)

    Article  MathSciNet  Google Scholar 

  42. Yager, R.R., Rybalov, A.: Noncommutative self-identity aggregation. Fuzzy Sets Syst. 85, 73–82 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleb Beliakov .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beliakov, G., James, S., Wu, JZ. (2020). Introduction. In: Discrete Fuzzy Measures. Studies in Fuzziness and Soft Computing, vol 382. Springer, Cham. https://doi.org/10.1007/978-3-030-15305-2_1

Download citation

Publish with us

Policies and ethics