Skip to main content

Abstract

Fluorescence-guided surgery represents an evolution in the intraoperative assessment of physiology and anatomy during precision surgery. Fluorophores with known light excitation and emission profiles are used to specifically target tissues or pharmacological processes. These photophysical properties can be harnessed to improve tissue penetration compared with visible light. There is a growing body of evidence on the clinical effectiveness of fluorescence-guided surgery in several domains ranging from benign to neoplastic disease across multiple disciplines.

Currently, the main application in colorectal surgery is assessment of bowel perfusion in order to reduce the rate of anastomotic leaks. Initial reports have shown such assessment to be safe and potentially lead to a lowering of the incidence. However, applications in lymphatic mapping, ureter identification and peritoneal metastases identification are active fields of clinical innovation where fluorescence may have further utility.

Future directions are the development of targeted fluorophores and the improvement in the regulatory process involved in taking fluorophores from the bench to the bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elliott JT, Dsouza AV, Davis SC, et al. Review of fluorescence guided surgery visualization and overlay techniques. Biomed Opt Express. 2015;6:3765. https://doi.org/10.1364/BOE.6.003765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tipirneni KE, Warram JM, Moore LS, et al. Oncologic procedures amenable to fluorescence-guided surgery. Ann Surg. 2017;266:36–47. https://doi.org/10.1097/SLA.0000000000002127.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Harmsen S, Teraphongphom N, Tweedle MF, et al. Optical surgical navigation for precision in tumor resections. Mol Imaging Biol. 2017;19:357–62. https://doi.org/10.1007/s11307-017-1054-1.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kobayashi H, Ogawa M, Alford R, et al. New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev. 2010;110:2620–40. https://doi.org/10.1021/cr900263j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vahrmeijer AL, Hutteman M, van der Vorst JR, et al. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol. 2013;10:507–18. https://doi.org/10.1038/nrclinonc.2013.123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Keller DS, Cohen R, Chand M, et al. Indocyanine green fluorescence imaging in colorectal surgery: overview, applications, and future directions. www.thelancet.com/gastrohep. Rev Lancet Gastroeneterol Hepatol. 2017;2:757–66. https://doi.org/10.1016/S2468-1253(17)30216-9.

    Article  Google Scholar 

  7. Stammes MA, Bugby SL, Porta T, et al. Modalities for image- and molecular-guided cancer surgery: image- and molecular-guided surgery. Br J Surg. https://doi.org/10.1002/bjs.10789.

  8. Zhang RR, Schroeder AB, Grudzinski JJ, et al. Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat Rev Clin Oncol. 2017;14:347–64. https://doi.org/10.1038/nrclinonc.2016.212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dewhirst MW, Secomb TW. Transport of drugs from blood vessels to tumour tissue. Nat Rev Cancer. 2017; https://doi.org/10.1038/nrc.2017.93.

  10. Benya R, Quintana J, Brundage B. Adverse reactions to lndocyanine green: a case report and a review of the literature. Catheter Cardiovasc Diagn. 17:231–3.

    Google Scholar 

  11. Bjerregaard J, Pandia MP, Jaffe RA. Occurrence of severe hypotension after indocyanine green injection during the intraoperative period. A Case Reports. 2013;1:26–30. https://doi.org/10.1097/ACC.0b013e3182933c12.

    Article  Google Scholar 

  12. Ginimuge PR, Jyothi SD. Methylene blue: revisited. J Anaesthesiol Clin Pharmacol. 2010;26:517–20.

    PubMed  PubMed Central  Google Scholar 

  13. Ha GW, Kim JH, Lee MR. Oncologic impact of anastomotic leakage following colorectal cancer surgery: a systematic review and meta-analysis. Ann Surg Oncol. 2017;24:3289–99. https://doi.org/10.1245/s10434-017-5881-8.

    Article  PubMed  Google Scholar 

  14. Ashraf SQ, Burns EM, Jani A, et al. The economic impact of anastomotic leakage after anterior resections in English NHS hospitals: are we adequately remunerating them? Color Dis. 2013;15:190–9. https://doi.org/10.1111/codi.12125.

    Article  Google Scholar 

  15. McDermott FD, Heeney A, Kelly ME, et al. Systematic review of preoperative, intraoperative and postoperative risk factors for colorectal anastomotic leaks. Br J Surg. 2015;102:462–79. https://doi.org/10.1002/bjs.9697.

    Article  CAS  PubMed  Google Scholar 

  16. Vignali A, Gianotti L, Braga M, et al. Altered microperfusion at the rectal stump is predictive for rectal anastomotic leak. Dis Colon Rectum. 2000;43:76–82.

    Article  CAS  Google Scholar 

  17. Sparreboom CL, Wu Z-Q, Ji J-F, Lange JF. Integrated approach to colorectal anastomotic leakage: communication, infection and healing disturbances. World J Gastroenterol. 2016;22:7226. https://doi.org/10.3748/wjg.v22.i32.7226.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rutegård M, Rutegård J. Anastomotic leakage in rectal cancer surgery: the role of blood perfusion. World J Gastrointest Surg. 2015;7:289. https://doi.org/10.4240/wjgs.v7.i11.289.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jafari MD, Wexner SD, Martz JE, et al. Perfusion assessment in laparoscopic left-sided/anterior resection (PILLAR II): a multi-institutional study. J Am Coll Surg. 2015;220:82–92.e1. https://doi.org/10.1016/j.jamcollsurg.2014.09.015.

    Article  PubMed  Google Scholar 

  20. Boni L, Fingerhut A, Marzorati A, et al. Indocyanine green fluorescence angiography during laparoscopic low anterior resection: results of a case-matched study. Surg Endosc. 2017;31:1836–40. https://doi.org/10.1007/s00464-016-5181-6.

    Article  PubMed  Google Scholar 

  21. Gröne J, Koch D, Kreis ME. Impact of intraoperative microperfusion assessment with Pinpoint Perfusion Imaging on surgical management of laparoscopic low rectal and anorectal anastomoses. Color Dis. 2015;17:22–8. https://doi.org/10.1111/codi.13031.

    Article  Google Scholar 

  22. Hellan M, Spinoglio G, Pigazzi A, Lagares-Garcia JA. The influence of fluorescence imaging on the location of bowel transection during robotic left-sided colorectal surgery. Surg Endosc. 2014;28:1695–702. https://doi.org/10.1007/s00464-013-3377-6.

    Article  PubMed  Google Scholar 

  23. Kudszus S, Roesel C, Schachtrupp A, Höer JJ. Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage. Langenbeck’s Arch Surg. 2010;395:1025–30. https://doi.org/10.1007/s00423-010-0699-x.

    Article  Google Scholar 

  24. Ris F, Hompes R, Cunningham C, et al. Near-infrared (NIR) perfusion angiography in minimally invasive colorectal surgery. Surg Endosc. 2014;28:2221–6. https://doi.org/10.1007/s00464-014-3432-y.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ris F, Liot E, Buchs NC, et al. Multicentre phase II trial of near-infrared imaging in elective colorectal surgery. Br J Surg. 2018; https://doi.org/10.1002/bjs.10844.

  26. Blanco-Colino R, Espin-Basany E. Intraoperative use of ICG fluorescence imaging to reduce the risk of anastomotic leakage in colorectal surgery: a systematic review and meta-analysis. Tech Coloproctol. 2017:8–10. https://doi.org/10.1007/s10151-017-1731-8.

  27. Stamos M, Wexner S. A randomized, controlled, parallel, multicenter study assessing perfusion outcomes with PINPOINT® near infrared fluorescence imaging in Low Anterior Resection. 2017. https://clinicaltrials.gov/ct2/show/NCT02205307. Accessed 13 Feb 2018.

  28. ISRCTN – ISRCTN13334746: intAct- IFA to prevent anastomotic leak in rectal cancer surgery. 2017. http://www.isrctn.com/ISRCTN13334746. Accessed 30 Jan 2018.

  29. Ris F, Buchs NC, Morel P, et al. Discriminatory influence of Pinpoint perfusion imaging on diversion ileostomy after laparoscopic low anterior resection. Color Dis. 2015;17:29–31. https://doi.org/10.1111/codi.13029.

    Article  Google Scholar 

  30. Carvello M, David G, Sacchi M, et al. Restorative proctocolectomy and IPAA for right sided colonic adenocarcinoma on FAP: abdominal laparoscopic approach combined with transanal total mesorectal excision – video vignette. Color Dis. 2018; https://doi.org/10.1111/codi.14024.

  31. Gould EA, Winship T, Philbin PH, Kerr HH. Observations on a “sentinel node” in cancer of the parotid. Cancer. 1960;13:77–8. https://doi.org/10.1002/1097-0142(196001/02)13:1<77::AID-CNCR2820130114>3.0.CO;2-D.

    Article  CAS  PubMed  Google Scholar 

  32. Toh U, Iwakuma N, Mishima M, et al. Navigation surgery for intraoperative sentinel lymph node detection using Indocyanine green (ICG) fluorescence real-time imaging in breast cancer. Breast Cancer Res Treat. 2015;153:337–44. https://doi.org/10.1007/s10549-015-3542-9.

    Article  CAS  PubMed  Google Scholar 

  33. Jewell EL, Huang JJ, Abu-Rustum NR, et al. Detection of sentinel lymph nodes in minimally invasive surgery using indocyanine green and near-infrared fluorescence imaging for uterine and cervical malignancies. Gynecol Oncol. 2014;133:274–7. https://doi.org/10.1016/j.ygyno.2014.02.028.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nishigori N, Koyama F, Nakagawa T, et al. Visualization of lymph/blood flow in laparoscopic colorectal Cancer surgery by ICG fluorescence imaging (lap-IGFI). Ann Surg Oncol. 2016;23:266–74. https://doi.org/10.1245/s10434-015-4509-0.

    Article  Google Scholar 

  35. Currie AC, Brigic A, Thomas-Gibson S, Suzuki N, Moorghen M, Jenkins JT, Faiz OD, Kennedy RH. A pilot study to assess near infrared laparoscopy with indocyanine green (ICG) for intraoperative sentinel lymph node mapping in early colon cancer. Eur J Surg Oncol. 2017;43(11):2044–51.

    Article  CAS  Google Scholar 

  36. Joshi HM, Eng M, Keller DS, Mbbs MC. Utilization of Indocyanine green to demonstrate lymphatic mapping in colon cancer. J Surg Oncol. 2017;116:2–4. https://doi.org/10.1002/jso.24795.

    Article  Google Scholar 

  37. Emile SH, Elfeki H, Shalaby M, et al. Sensitivity and specificity of indocyanine green near-infrared fluorescence imaging in detection of metastatic lymph nodes in colorectal cancer: systematic review and meta-analysis. J Surg Oncol. 2017;116(6):730–40. https://doi.org/10.1002/jso.24701.

    Article  PubMed  Google Scholar 

  38. Chand M, Keller DS, Joshi HM, et al. Feasibility of fluorescence lymph node imaging in colon cancer: FLICC. Tech Coloproctol. 2018;22:1–7. https://doi.org/10.1007/s10151-018-1773-6.

    Article  Google Scholar 

  39. Fujita S, Mizusawa J, Kanemitsu Y, et al. Mesorectal excision with or without lateral lymph node dissection for clinical stage II/III lower rectal cancer (JCOG0212): a multicenter, randomized controlled, Noninferiority Trial. Ann Surg. 2017;266:201–7. https://doi.org/10.1097/SLA.0000000000002212.

    Article  PubMed  Google Scholar 

  40. Filippello A, Porcheron J, Klein JP, et al. Affinity of Indocyanine Green in the Detection of Colorectal Peritoneal Carcinomatosis. Surg Innov. 2017;24:103–8. https://doi.org/10.1177/1553350616681897.

    Article  PubMed  Google Scholar 

  41. Noura S, Ohue M, Seki Y, et al. Feasibility of a lateral region sentinel node biopsy of lower rectal cancer guided by Indocyanine green using a near-infrared camera system. Ann Surg Oncol. 2010;17:144–51. https://doi.org/10.1245/s10434-009-0711-2.

    Article  PubMed  Google Scholar 

  42. Kazanowski M, Al Furajii H, Cahill RA. Near-infrared laparoscopic fluorescence for pelvic side wall delta mapping in patients with rectal cancer- ‘PINPOINT’ nodal assessment. Color Dis. 2015;17:32–5. https://doi.org/10.1111/codi.13030.

    Article  Google Scholar 

  43. Andersen P, Andersen LM, Iversen LH. Iatrogenic ureteral injury in colorectal cancer surgery: a nationwide study comparing laparoscopic and open approaches. Surg Endosc. 2015;29:1406–12. https://doi.org/10.1007/s00464-014-3814-1.

    Article  PubMed  Google Scholar 

  44. Liguori G, Dobrinja C, Pavan N, et al. Iatrogenic ureteral injury during laparoscopic colectomy: incidence and prevention a current literature review. Ann Ital Chir. 2016;87:446–55.

    PubMed  Google Scholar 

  45. Brudenell M. Medico-legal aspects of ureteric damage during abdominal hysterectomy. BJOG An Int J Obstet Gynaecol. 1996;103:1180–3. https://doi.org/10.1111/j.1471-0528.1996.tb09625.x.

    Article  CAS  Google Scholar 

  46. Dyer RB, Chen MY, Zagoria RJ, et al. Complications of ureteral stent placement. Radiographics. 2002;22:1005–22. https://doi.org/10.1148/radiographics.22.5.g02se081005.

    Article  PubMed  Google Scholar 

  47. Yeung TM, Volpi D, Tullis IDC, et al. Identifying ureters in situ under fluorescence during laparoscopic and open colorectal surgery. Ann Surg. 2016;263:e1–2. https://doi.org/10.1097/SLA.0000000000001513.

    Article  PubMed  Google Scholar 

  48. Park H, Farnam R. Novel use of indocyanine green for intraoperative, real-time localization of ureter during robot-assisted excision of endometriosis. J Minim Invasive Gynecol. 2015;22:S69. https://doi.org/10.1016/j.jmig.2015.08.185.

    Article  CAS  PubMed  Google Scholar 

  49. Penna M, Hompes R, Arnold S, et al. Incidence and risk factors for anastomotic failure in 1594 patients treated by transanal total mesorectal excision. Ann Surg. 2018;XX:1. https://doi.org/10.1097/SLA.0000000000002653.

    Article  Google Scholar 

  50. Barnes TG, Penna M, Hompes R, Cunningham C. Fluorescence to highlight the urethra: a human cadaveric study. Tech Coloproctol. 2017;21:439–44. https://doi.org/10.1007/s10151-017-1615-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barnes TG, Volpi D, Cunningham C, et al. Improved urethral fluorescence during low rectal surgery: a new dye and a new method. Tech Coloproctol. 2018;22:115–9. https://doi.org/10.1007/s10151-018-1757-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liberale G, Bourgeois P, Larsimont D, et al. Indocyanine green fluorescence-guided surgery after IV injection in metastatic colorectal cancer: a systematic review. Eur J Surg Oncol. 2017;43:1656–67. https://doi.org/10.1016/j.ejso.2017.04.015.

    Article  CAS  PubMed  Google Scholar 

  53. Liberale G, Vankerckhove S, Caldon MG, et al. Fluorescence imaging after indocyanine green injection for detection of peritoneal metastases in patients undergoing cytoreductive surgery for peritoneal carcinomatosis from colorectal cancer. Ann Surg. 2016;264:1110–5. https://doi.org/10.1097/SLA.0000000000001618.

    Article  PubMed  Google Scholar 

  54. Garland M, Yim JJ, Bogyo M. A bright future for precision medicine: advances in fluorescent chemical probe design and their clinical application. Cell Chem Biol. 2016;23:122–36. https://doi.org/10.1016/j.chembiol.2015.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tummers WS, Warram JM, Tipirneni KE, et al. Regulatory aspects of optical methods and exogenous targets for cancer detection. Cancer Res. 2017;77:2197–206. https://doi.org/10.1158/0008-5472.CAN-16-3217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rosenthal EL, Warram JM, De Boer E, et al. Successful translation of fluorescence navigation during oncologic surgery: a consensus report. J Nucl Med. 2016;57:144–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Chand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soares, A.S., Chand, M. (2019). Fluorescence in Colorectal Surgery. In: Bardakcioglu, O. (eds) Advanced Techniques in Minimally Invasive and Robotic Colorectal Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-15273-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15273-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15272-7

  • Online ISBN: 978-3-030-15273-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics