Skip to main content

Geology of Egypt: The Northern Red Sea

  • Chapter
  • First Online:
The Geology of Egypt

Part of the book series: Regional Geology Reviews ((RGR))

Abstract

The Red Sea and Gulf of Aden constitute parts of the Afro-Arabian rift system that are in the most advanced stages of continental break-up. These basins have therefore received extensive scrutiny in the geoscientific literature, but several aspects of their evolution remain enigmatic. Many of their most important features lie beneath several kilometers of water, in places covered by several kilometers of evaporite deposits, and along international political boundaries. All these factors greatly complicate the acquisition and interpretation of both subsurface wellbore and geophysical datasets. Much of our understanding of the evolution of the Red Sea has therefore relied on the integration of outcrop geology and land-based analytical studies with these more difficult to obtain marine observations. While stratigraphic, radiometric and structural data indicate that extension and rifting initiated in the southern Red Sea during the Late Oligocene (~28–25 Ma), the start of rifting in the northern Red Sea is more difficult to constrain due to paucity of rift-related volcanism and reliable biostratigraphy of the oldest syn-kinematic sedimentary strata. A regional NW-SE trending alkali basalt dike swarm, with associated extensive basalt flows in the vicinity of Cairo, appears to mark the onset of crustal-scale extension and continental rifting. These dikes and scarce local flows, erupted at the Oligocene-Miocene transition (~23 Ma) and coeval with similar trending dikes along the Yemen and Saudi Arabian Red Sea margin, are interbedded with the oldest part of the paleontologically dated siliciclastic syn-rift stratigraphic section (Aquitanian Nukhul Fm.), and are associated with the oldest recognized extensional faulting in the Red Sea. Bedrock thermochronometric results from the Gulf of Suez and both margins of the Red Sea also point to a latest Oligocene onset of major normal faulting and rift flank exhumation and large-magnitude early Miocene extension along the entire length of the Red Sea rift. This early phase of rifting along the Egyptian Red Sea margin and in the Gulf of Suez resulted in the formation of a complex, discontinuous fault pattern with very high rates of fault block rotation. The rift was segmented into distinct sub-basins with alternating regional dip domains separated by well-defined accommodation zones. Sedimentary facies were laterally and vertically complex and dominated by marginal to shallow marine siliciclastics of the Abu Zenima, Nukhul and Nakheil Formations. Neotethyan faunas appeared throughout all of the sub-basins at this time. During the Early Burdigalian (~20 Ma) tectonically-driven subsidence accelerated and was accompanied by a concordant increase in the denudation and uplift of the rift shoulders. The intra-rift fault networks coalesced into through-going structures and fault movement became progressively more focused along the rift axis. This reconfiguration of the rift structure resulted in more laterally continuous depositional facies and the preponderance of moderate-to-deep marine deposits of the Rudeis, Kareem and Ranga Formations. The early part of the Middle Miocene (~14 Ma) was marked by dramatic changes in rift kinematics and sedimentary depositional environments in the Red Sea and Gulf of Suez. The onset of the left-lateral Gulf of Aqaba transform fault system, isolating the Gulf of Suez from the active northern Red Sea rift, resulted in a switch from orthogonal to oblique rifting and to hyperextension in the northern Red Sea. The open marine seaway was replaced by an extensive evaporitic basin along the entire length of the rift from the central Gulf of Suez to Yemen/Eritrea. In Egypt these evaporites are ascribed to the Belayim, South Gharib, Zeit and Abu Dabbab Formations. Evaporite deposition continued to dominate in the Red Sea until the end of the Miocene (~5 Ma) when a subaerial unconformity developed across most of the basin. With the onset of seafloor spreading in the southern Red Sea, Indian Ocean marine waters re-entered through the Bab el Mandab in the earliest Pliocene and re-established open marine conditions. During the Pleistocene, glacial-isostatic driven sea-level changes resulted in the formation of numerous coral terraces and wave-cut benches around the margins of the Red Sea, Gulf of Suez and Gulf of Aqaba. Their present elevations suggest that the Egyptian Red Sea margin has been relatively vertically stable since the Late Pleistocene. While there is general agreement that full seafloor spreading, producing well-defined magnetic stripes, has been occurring in the southern Red Sea since ~5 Ma, there is ongoing debate whether and when lithospheric break-up has occurred in the northern Red Sea. Industry wellbore and seismic data demonstrate that continental crust extends at least several tens of kilometers offshore from the present-day coastline, and that the northern Red Sea is a non-volcanic rifted margin. On the basis of integrated geophysical, petrological, geochemical and geological datasets, we contend that true, laterally integrated sea-floor spreading is not yet manifest in the northern Red Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbate E, Balestrieri ML, Bigazzi G (2002) Morphostructural development of the Eritrean rift flank (southern Red Sea) inferred from apatite fission track analysis. J Geophys Res 107(B11)

    Article  Google Scholar 

  • Abdel Gawad M (1969) New evidence of transcurrent movements in Red Sea area and petroleum implications. AAPG Bull 53:1466–1479

    Google Scholar 

  • Abdel-Aal AK, Yagi Y (2017) Earthquake source characterization, moment tensor solutions, and stress field of small-moderate earthquakes occurred in the northern Red Sea Triple Junction. Geosci J 21:235–251

    Article  Google Scholar 

  • Abdel-Aal AK, Badreldin H (2016) Seismological aspects of the 27 June 2015 Gulf of Aqaba earthquake and its sequence of aftershocks. J Seismol 20:935–952

    Article  Google Scholar 

  • Aki K (1965) Maximum likelihood estimate of b in the formula logN = a-bM and its confidence limits. Bull Earthq Res Inst Tokyo Univ 43:237–239

    Google Scholar 

  • Al-Ahmadi K, Al-Amri A, See L (2014) A spatial statistical analysis of the occurrence of earthquakes along the Red Sea floor spreading: clusters of seismicity. Arab J Geosci 7:2893–2904

    Article  Google Scholar 

  • Al-Amri AM, Schult FR, Bufe CG (1991) Seismicity and aeromagnetic features of the Gulf of Aqaba (Elat) region. J Geophys Res 96:20179–20185

    Article  Google Scholar 

  • Almalki KA, Betts PG, Ailleres L (2015) The Red Sea—50 years of geological and geophysical research. Earth Sci Rev 147:109–140

    Article  Google Scholar 

  • Al-Tarazi E (2000) The Major Gulf of the Aqaba earthquake, 22 November 1995—maximum intensity distribution. Nat Hazards 22:17–27

    Article  Google Scholar 

  • Altherr R, Henjes-Kunst F, Puchelt H, Baumann A (1988) Volcanic activity in the Red Sea axial trough: evidence for a large mantle diapir? Tectonophysics 150:121–133

    Article  Google Scholar 

  • Altherr R, Henjes-Kunst F, Baumann A (1990) Asthenosphere versus lithosphere as possible sources for basaltic magmas erupted during formation of the Red Sea: constraints from Sr, Pb, and Nd isotopes. Earth Planet. Sci. Lett. 96:269–286

    Article  Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Article  Google Scholar 

  • Antonini P, Petrini R, Contin G (1998) A segment of sea-floor spreading in the central Red Sea: basalts from the Nereus Deep (23 degrees 00′-23 degrees 20′ N). J Afr Earth Sci 27:107–114

    Article  Google Scholar 

  • ArRajehi A, McClusky S, Reilinger R, Daoud M, Alchalbi A, Ergintav S, Gomez F, Sholan J, Bou-Rabee F, Ogubazghi G, Haileab B, Fisseha S, Asfaw L, Mahmoud S, Rayan A, Bendik R, Kogan L (2010) Geodetic constraints on present-day motion of the Arabian Plate: Implications for Red Sea and Gulf of Aden rifting. Tectonics 29(3)

    Google Scholar 

  • Babiker N, Mula AHG, El-Hadidy S (2015) A unified Mw-based earthquake catalogue and seismic source zones for the Red Sea region. J Afr Earth Sci 109:168–176

    Article  Google Scholar 

  • Badawy A (2001) Status of the crustal stress in Egypt as inferred from earthquake focal mechanisms and borehole breakouts. Tectonophysics 343(1–2):49–61

    Article  Google Scholar 

  • Badawy A, Mohamed AMS, Abu-Ali N (2008) Seismological and GPS constraints on Sinai sub-plate motion along the Suez Rift. Stud Geophys Geod 52:397–412

    Article  Google Scholar 

  • Baker BH (1970) The structural pattern of the Afro-Arabian rift system in relation to plate tectonics. Philos Trans R Soc Lond Ser A Math Phys Sci 267:383–391

    Article  Google Scholar 

  • Baker J, Snee L, Menzies M (1996) A brief Oligocene period of flood volcanism in Yemen: implications for the duration and rate of continental flood volcanism at the Afro-Arabian triple junction. Earth Planet Sci Lett 138:39–55

    Article  Google Scholar 

  • Bakor AR, Gass IG, Neary CR (1976) Jabal al Wask, northwest Saudi Arabia: an Eocambrian back-arc ophiolite. Earth Planet Sci Lett 30(1):1–9

    Article  Google Scholar 

  • Balestrieri ML, Stuart FM, Persano C, Abbate E, Bigazzi G (2005) Geomorphic development of the escarpment of the Eritrean margin, southern Red Sea from combined apatite fission-track and (U–Th)/He thermochronometry. Earth Planet Sci Lett 231:97–110

    Article  Google Scholar 

  • Barakat H, Miller P (1984) Geology and petroleum exploration, Safaga Concession, northern Red Sea, Egypt. In: Proceedings of the 7th exploration seminar, Egyptian General Petroleum Corporation, Cairo, pp 191–214

    Google Scholar 

  • Barakat H, Miller P (1986) Geology and petroleum exploration, Safaga Concession, Northern Red Sea, Egypt. In: Proceedings of the seventh exploration seminar. Egyptian General Petroleum Corporation and Egypt Petroleum Exploration Society, Mar 1984, Cairo, pp 191–214

    Google Scholar 

  • Ben-Avraham Z (1985) Structural framework of the Gulf of Elat (Aqaba) northern Red Sea. J Geophys Res 90:703–726

    Article  Google Scholar 

  • Ben-Avraham Z, Garfunkel Z, Almagor G, Hall JK (1979) Continental breakup by a leaky transform: the Gulf of Elat (Aqaba). Science 206:214–216

    Article  Google Scholar 

  • Ben-Menahem A, Aboodi E (1971) Tectonic patterns in the northern Red Sea region. J Geophys Res 76(11):2674–2689

    Article  Google Scholar 

  • Bender B (1983) Maximum likelihood estimation of b-values for magnitude grouped data. Bull Seismol Soc Am 73:831–851

    Google Scholar 

  • Birt CS, Maguire PKH, Khan MA, Thybo H, Keller GR, Patel J (1997) The influence of pre-existing structures on the evolution of the southern Kenya Rift Valley—evidence from seismic and gravity studies. Tectonophysics 278:211–242

    Article  Google Scholar 

  • Bohannon RG, Naeser CW, Schmidt DL, Zimmermann RA (1989) The timing of uplift, volcanism, and rifting peripheral to the Red Sea: a case for passive rifting? J Geophys Res 94:1683–1701

    Article  Google Scholar 

  • Bojar AV, Fritz H, Kargl S, Unzog W (2002) Phanerozoic tectonothermal history of the Arabian-Nubian shield in the Eastern Desert of Egypt: evidence from fission track and paleostress data. J Afr Earth Sci 34:191–202

    Article  Google Scholar 

  • Bonatti E (1985) Punctiform initiation of seafloor spreading in the Red Sea during transition from continental to an oceanic rift. Nature 316:33–37

    Article  Google Scholar 

  • Bonatti E, Hamlyn P, Ottonello G (1981) Upper mantle beneath a young oceanic rift—peridotites from the island of Zabargad (Red-Sea). Geology 9:474–479

    Article  Google Scholar 

  • Bonatti E, Clocchiatti R, Colantoni P, Gelmini R, Marinelli G, Ottonello G, Santacroce R, Taviani M, Abdel-Meguid AA, Assaf HS, El Tahir MA (1983) Zabargad (St. John) Island: an uplifted fragment of sub-Red Sea lithosphere. J Geol Soc Lond 14D:667–690

    Google Scholar 

  • Bonatti E, Ottonello G, Hamlyn PR (1986) Peridotites from the island of Zabargad (Red Sea). J Geophys Res 91:599–631

    Article  Google Scholar 

  • Bonatti E, Seyler M (1987) Crustal underplating and evolution in the Red Sea rift. J Geophys Res 92:12083–12821

    Article  Google Scholar 

  • Bosworth W (1993) Nature of the Red Sea crust. A controversy revisited: comment and reply. Geology 21:574–575

    Article  Google Scholar 

  • Bosworth W (1994) A model for the three-dimensional evolution of continental rift basins, north-east Africa. In: Schandelmeier H, Stern RJ (eds) Geology of Northeast Africa (Part 2). Geol Rundsch 83:671–688

    Google Scholar 

  • Bosworth W, Burke K (2005) Evolution of the Red Sea—Gulf of Aden rift system. In: Post PJ, Rosen NC, Olson DL, Palmes SL, Lyons KT, Newton GB (eds) Petroleum systems of divergent continental margin basin. 2005 Gulf Coast Section SEPM Foundation 25th Bob F. Perkins Annual Research Conference, Houston, 4–7 Dec 2005, CD-ROM, pp 342–372

    Chapter  Google Scholar 

  • Bosworth W, Durocher S (2017) Present-day stress fields of the Gulf of Suez (Egypt) based on exploratory well data: non-uniform regional extension and its relation to inherited structures and local plate motion. J Afr Earth Sci 136:136–147

    Article  Google Scholar 

  • Bosworth W, McClay K (2001) Structural and stratigraphic evolution of the Gulf of Suez rift, Egypt: a synthesis. In: Ziegler PA, Cavazza W, Robertson AHF, Crasquin-Soleau S (eds) Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins, Mémoires du Muséum National d’Histoire Naturelle de Paris, vol 186, pp 567–606

    Google Scholar 

  • Bosworth W, Stockli D (2016) Early magmatism in the greater Red Sea rift: timing and significance. Can J Earth Sci 53:1158–1176

    Article  Google Scholar 

  • Bosworth W, Taviani M (1996) Late quaternary reorientation of stress field and extension direction in the southern Gulf of Suez, Egypt: evidence from uplifted coral terraces, mesoscopic fault arrays, and borehole breakouts. Tectonics 15(4):791-802

    Article  Google Scholar 

  • Bosworth W, Crevello P, Winn RD Jr, Steinmetz J (1998) Structure, sedimentation, and basin dynamics during rifting of the Gulf of Suez and northwestern Red Sea. In: Purser BH, Bosence DWJ (eds) Sedimentation and Tectonics of Rift basins: Red Sea-Gulf of Aden. Chapman and Hall, London, pp 77–96

    Chapter  Google Scholar 

  • Bosworth W, Darwish M, Crevello P, Taviani M, Marshak S (1996) Stratigraphic and structural evolution of Zabargad Island (Red Sea, Egypt) since the Early Cretaceous. In: Youssef El SA (ed) Proceedings of the 3rd international conference on geology of the Arab World, vol 1, pp 161–190

    Google Scholar 

  • Bosworth W, Huchon P, McClay K (2005) The Red Sea and Gulf of Aden basins. J Afr Earth Sci 43:334–378

    Article  Google Scholar 

  • Bosworth W, Stockli DF, Helgeson DE (2015) Integrated outcrop, 3D seismic, and geochronologic interpretation of Red Sea dike-related deformation in the Western Desert, Egypt—the role of the 23 Ma Cairo “mini-plume”. J Afr Earth Sci 109:107–119

    Article  Google Scholar 

  • Bosworth W, Montagna P, Pons-Branchu P, Rasul N, Taviani M (2017) Seismic hazards implications of uplifted Pleistocene coral terraces in the Gulf of Aqaba. Sci Rep 7:1–13

    Article  Google Scholar 

  • Clark MD (1986) Explanatory notes to the geologic map of the Al Bad’ quadrangle, sheet 28A, Kingdom of Saudi Arabia. Saudi Arabian Deputy Ministry for Mineral Resources Geoscience Map Series GM-81A, C, scale 1:250,000, with text, 46 pp

    Google Scholar 

  • Cochran JR (1983) A model for the development of the Red Sea. AAPG Bull 67:41–69

    Google Scholar 

  • Cochran JR (2005) Northern Red Sea: nucleation of an oceanic spreading center within a continental rift. Geochem Geophys Geosyst 6:Q03006

    Article  Google Scholar 

  • Cochran JR, Martinez F (1988) Evidence from the northern Red Sea on the transition from continental to oceanic rifting. Tectonophysics 153:25–53

    Article  Google Scholar 

  • Cochran JR, Karner GD (2007) Constraints on the deformation and rupturing of continental lithosphere of the Red Sea: the transition from rifting to drifting. In: Karner GD, Manatschal G, Pinheiro LM (eds) Imaging, mapping and modelling continental lithosphere extension and breakup. Geological Society, London, Special Publications, vol 282, pp 265–289

    Google Scholar 

  • Cochran JR, Martinez F, Steckler MS, Hobart MS (1986) Conrad Deep: a new Northern Red Sea Deep. Origin and implications for continental rifting. Earth Planet Sci Lett 78:18–32

    Article  Google Scholar 

  • Darwish M (1994) Cenomanian–Turonian sequence stratigraphy, basin evolution and hydrocarbon potentialities of Northern Egypt. In: Proceedings of the 2nd international conference on geology of the Arab world, vol 3. Cairo University, Cairo, Egypt, pp 315–362

    Google Scholar 

  • Du Toit AL (1937) Our wandering continents. Oliver and Boyd, Edinburgh, xiii +366 pp

    Google Scholar 

  • EGPC (1964) Oligocene and Miocene rock-stratigraphy of the Gulf of Suez region. Consultative Stratigraphic Committee of the Egyptian General Petroleum Corporation, Cairo, Report E.R. 575, 142 pp

    Google Scholar 

  • Ehrhardt A, Hubscher C (2015) The northern Red Sea in transition from rifting to drifting—lessons learned from ocean deeps. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin, Heidelberg, pp 121–135

    Google Scholar 

  • Ehrhardt A, Hübscher C, Ben-Avraham Z, Gajewski D (2005) Seismic study of pull-apart-induced sedimentation and deformation in the Northern Gulf of Aqaba (Elat). Tectonophys 396:59–79

    Article  Google Scholar 

  • El-Akkad SE, Dardir A (1966) Geology of the Red Sea coast between Ras Shagra and Mersa Alam with short note on exploratory work at Gebel El Rusas lead-zinc deposits. Geol Surv Egypt, 67 pp. Paper 35

    Google Scholar 

  • El-Bohoty M, Brimich L, Saleh A, Saleh S (2012) Comparative study between the structural and tectonic situation of the Southern Sinai and the Red Sea, Egypt, as deduced from magnetic, gravity and seismic data. Contrib Geophys Geod 42:357–388

    Google Scholar 

  • El Moursi MEE (1993) Pleistocene evolution of the reef terraces of the Red Sea coastal plain between Hurghada and Marsa Alam, Egypt. J Afr Earth Sci 17:125–127

    Article  Google Scholar 

  • Engel AEJ, Dixon TH, Stern RJ (1980) Late precambrian evolution of Afro-Arabian crust from ocean arc to craton. Geol Soc Am Bull 91(12):699

    Article  Google Scholar 

  • Evans AL (1988) Neogene tectonic and stratigraphic events in the Gulf of Suez rift area, Egypt. Tectonophysics 153:235–247

    Article  Google Scholar 

  • Fairhead JD, Girdler RW (1970) The seismicity of the Red Sea, Gulf of Aden and Afar triangle. Philos Trans Roy Soc A 267:49–74

    Article  Google Scholar 

  • Fleck RJ, Greenwood WR, Hadley DG, Anderson RE, Schmidt DL (1980) Rubidium-strontium geochronology and platetectonic evolution of the southern part of the Arabian Shield: U.S. Geological Survey Professional Paper 1131, 38 p

    Google Scholar 

  • Frisch W, Al-Shanti A (1977) Ophiolite belts and the collision of island arcs in the Arabian Shield. Tectonophysics 43(3–4):293–306

    Article  Google Scholar 

  • Frizon de Lamotte DF, Tavakoli-Shirazi S, Leturmy P, Averbuch O, Mouchot N, Raulin C, Leparmentier F, Blanpied C, Ringenbach JC (2013) Evidence for Late Devonian vertical movements and extensional deformation in northern Africa and Arabia: integration in the geodynamics of the Devonian world. Tectonics 32:107–122

    Article  Google Scholar 

  • Gass IG (1977) The evolution of the Pan African crystalline basement in NE Africa and Arabia. J Geol Soc 134(2):129–138

    Article  Google Scholar 

  • Gaulier J-M, Le Pichon X, Lyberis N, Avedik F, Geli L, Moretti I, Deschamps A, Hafez S (1988) Seismic study of the crustal thickness, northern Red Sea and Gulf of Suez. Tectonophysics 153:55–88

    Article  Google Scholar 

  • Girdler RW (1991) The Afro-Arabian rift system; an overview. Tectonophysics 197:139–153

    Article  Google Scholar 

  • Girdler RW, Styles P (1974) Two-stage Red Sea floor spreading. Nature 247:7–11

    Article  Google Scholar 

  • Girdler RW, Whitmarsh RB (1974) Miocene evaporites in Red Sea cores, their relevance to the problem of the width and age of oceanic crust beneath the Red Sea. In: Whitmarsh RB, Weser OE, Ross DA et al (eds) Initial reports of the Deep Sea drilling project, vol 2. U.S. Government Printing Office, Washington, D.C., pp 913–921

    Google Scholar 

  • Gordon G, Hansen B, Scott J, Hirst C, Graham R, Grow T, Spedding A, Fairhead S, Fullarton L, Griffin D (2010) The hydrocarbon prospectivity of the Egyptian North Red Sea basin. In: Vining BA, Pickering SC (eds) Proceedings of the 7th petroleum geology conference, petroleum geology: from mature basins to new frontiers. Geological Society, London, pp 783–789

    Article  Google Scholar 

  • Gregory JW (1896) The Great Rift Valley. John Murray, London, p 422

    Google Scholar 

  • Greiling RO, El Ramly MF, El Arhal H, Stern RJ (1988) Tectonic evolution of the northwestern Red Sea margin as related to basement structure. Tectonophysics 153:179–191

    Article  Google Scholar 

  • Guennoc P, Pautot G, Coutelle A (1988) Surficial structures of the northern Red Sea axial vally from 23° N to 28° N: time and space evolution of neo-oceanic structures. Tectonophysics 153:1–23

    Article  Google Scholar 

  • Guennoc P, Pautot G, Leqentrec MF, Coutelle A (1990) Structure of an early oceanic rift in the northern Red-Sea, Ocean. Acta 13:145–157

    Google Scholar 

  • Gutemberg B, Richter CF (1942) Earthquake magnitude, intensity, energy and acceleration. Bull Seismol Soc Am 32:163–191

    Google Scholar 

  • Haase KM, Muhe R, Stoffers P (2000) Magmatism during extension of the lithosphere: geochemical constraints from lavas of the Shaban Deep, northern Red Sea. Chem Geol 166:225–239

    Article  Google Scholar 

  • Hall SA, Andreason GE, Girdler RW (1977) Total intensity magnetic anomaly map of the Red Sea and adjacent coastal areas, a description and preliminary interpretation, vol 22. Saudi Arabia Directorate General Mineral Resources Bulletin, Red Sea Research 1970–1975, F1–F15

    Google Scholar 

  • Han Q, Wang L, Xua J, Carpinteri A, Lacidogna G (2015) A robust method to estimate the b-value of the magnitude-frequency distribution of earthquakes. Chaos Solitons Fractals 81:103–110

    Article  Google Scholar 

  • Hansen SE, Rodgers AJ, Schwartz SY, Al-Amri AMS (2007) Imaging ruptured lithosphere beneath the Red Sea and Arabian Peninsula. Earth Planet Sci Lett 259:256–265

    Article  Google Scholar 

  • Hoang CT, Taviani M (1991) Stratigraphic and tectonic implications of uranium-series dated coral reefs from uplifted Red Sea islands. Quat Res 35:264–273

    Article  Google Scholar 

  • Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 79:33–45

    Article  Google Scholar 

  • Hofstetter A (2003) Seismic observations of the 22/11/1995 Gulf of Aqaba earthquake sequence. Tectonophys 369:21–36

    Article  Google Scholar 

  • Hosny A, El-Hady SM, Guidarelli M, Panza GF (2012) Source moment tensors of the earthquake Swarm in Abu-Dabbab area, South-East Egypt. Rend Fis Acc Lincei 23:149–163

    Article  Google Scholar 

  • Hosny A, Nyblade A (2014) Crustal structure in southeastern Egypt: symmetric thinning of the northern Red Sea rifted margins. Geology 42:219–222

    Article  Google Scholar 

  • Hosny A, Nyblade A (2016) The crustal structure of Egypt and the northern Red Sea region. Tectonophysics 687:257–267

    Article  Google Scholar 

  • Huang PY, Solomon SC (1987) Centroid depths and mechanisms of mid-ocean ridge earthquakes in the Indian Ocean. Gulf of Aden, and Red Sea. J Geophys Res 92(B2):1361

    Article  Google Scholar 

  • Hughes GW, Perincek D, Grainger DJ, Abu-Bshait A-J, Jarad A-RM (1999) Lithostratigraphy and depositional history of part of the Midyan region, northwestern Saudi Arabia. GeoArabia 4:503–541

    Google Scholar 

  • Hughes GW, Perincek D, Abu-Bshait A-J, Jarad A-RM (2000) Aspects of Midyan geology, Saudi Arabian Red Sea, Saudi Aramco. J Technol Winter 1999(2000):12–42

    Google Scholar 

  • Ishimoto M, Iida K (1939) Observations sur les seismes enregistres par le microsismographe construit dernierement (1). Bull Earthq Res Inst Tokyo Univ 17:443–478

    Google Scholar 

  • Jarrige J-J, Ott d’Estevou P, Burollet PF, Montenat C, Prat P, Richert J-P, Thiriet J-P (1990) The multistage tectonic evolution of the Gulf of Suez and northern Red Sea continental rift from field observations. Tectonics 9:441–465

    Article  Google Scholar 

  • Johnson PR (2014) An expanding Arabian-Nubian Shield geochronologic and isotopic dataset: defining limits and confirming the tectonic setting of a Neoproterozoic accretionary orogeny. Open Geol J 8:3–33

    Article  Google Scholar 

  • Kaz’min VG (1977) Characteristics of geodynamic evolution of the Afro-Arabian rift system. Izd Nauka Sib Otd Novosibirsk [In Russian]

    Google Scholar 

  • Kerdany MT, Cherif OH (1990) Mesozoic. In: Said R (ed) The geology of Egypt (Chapter 22). A.A. Balkema, Rotterdam, pp 407–438

    Chapter  Google Scholar 

  • Khalil SM (1998) Tectonic evolution of the eastern margin of the Gulf of Suez, Egypt. PhD thesis, Royal Holloway, University of London, 349 pp

    Google Scholar 

  • Khalil SM, McClay KR (2001) Tectonic evolution of the northwestern Red Sea–Gulf of Suez rift system. In: Wilson RCL, Whitmarsh RB, Taylor B, Froitzheim N (eds) Non-volcanic rifting of continental margins: a comparison of evidence from land and sea. Geological Society, London, Special Publications, vol 187, pp 453–473. https://doi.org/10.1144/GSL.SP.2001.187.01.22

    Article  Google Scholar 

  • Khalil SM, McClay KR (2002) Extensional fault-related folding, northwestern Red Sea, Egypt. J Struct Geol 24:743–762

    Article  Google Scholar 

  • Khalil SM, McClay KR (2009) Structural control on syn-rift sedimentation, northwestern Red Sea margin, Egypt. Mar Pet Geol 26:1018–1034

    Article  Google Scholar 

  • Khalil SM, McClay KR (2012) Structural control on syn-rift sedimentation, northwestern Red Sea, Egypt (Chapter 5). In: Roberts DG, Bally AW (eds) Regional geology and tectonics: phanerozoic rift systems and sedimentary basins. Elsevier, pp 73–103

    Google Scholar 

  • Khalil SM, McClay KR (2016) 3D geometry and kinematic evolution of extensional fault-related folds, NW Red Sea, Egypt. In: Childs C, Holdsworth RE, Jackson CA-L, Manzocchi T, Walsh JJ, Yielding G (eds) The geometry and growth of normal faults. Geological Society, London, Special Publications, vol 439, pp 109–130. https://doi.org/10.1144/SP439.11

    Article  Google Scholar 

  • Khalil SM, McClay KR (2018) Extensional fault-related folding in the northwestern Red Sea Egypt: segmented fault growth, fault linkages, corner folds and basin evolution. In: McClay KR, Hammerstein JA (eds) Passive margins: tectonics, sedimentation and magmatism. Geological Society of London Special Publications. https://doi.org/10.1144/SP476.12

  • Khan MA (1975) The Afro–Arabian rift system. Sci Prog (1916) 62:207–236

    Google Scholar 

  • Kohn BP, Eyal M (1981) History of uplift of the crystalline basement of Sinai and its relation to opening of the Red Sea as revealed by fission track dating of apatites. Earth Planet Sci Lett 52:129–141

    Article  Google Scholar 

  • Kohn BP, Eyal M, Feinstein S (1992) A major late Devonian-early Carboniferous (Hercynian) thermotectonic event at the NW margin of the Arabian-Nubian shield: evidence from zircon fission track dating. Tectonics 11:1018–1027

    Article  Google Scholar 

  • Kopp RE, Simons FJ, Mitrovica JX, Maloof AC, Oppenheimer M (2009) Probabilistic assessment of sea level during the last interglacial stage. Nature 462:863–868

    Article  Google Scholar 

  • Langmuir CH, Klein EM, Plank T (1992) Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. In: Morgan JP, Blackman DK, Sinton JK (eds) Mantle flow and melt generation at Mid-Ocean ridges. Geophysical monograph 71. American Geophysical Union, Washington DC, pp 183–280

    Chapter  Google Scholar 

  • Lehnert K, Su Y, Langmuir CH, Sarbas B, Nohl U (2000) A global geo-chemical database structure for rocks. Geochem Geophys Geosyst 1:1012

    Article  Google Scholar 

  • Le Pichon X, Gaulier J-M (1988) The rotation of Arabia and the Levant fault system. Tectonophysics 153:271–294

    Article  Google Scholar 

  • Ligi M, Bonatti E, Bortoluzzi G, Cipriani A, Cocchi L, Caratori Tontini F, Carminati E, Ottolini L, Schettino A (2012) Birth of an ocean in the Red Sea: initial pangs. Geochem Geophys Geosyst 13:Q08009

    Article  Google Scholar 

  • Ligi M, Bonatti E, Bosworth W, Cai Y, Cipriani A, Palmiotto C, Ronca S, Seyler M (2018) Birth of an ocean in the Red Sea: oceanic-type basaltic melt intrusions precede continental rupture. Gondwana Res 54:150–160

    Article  Google Scholar 

  • Ligi M, Bonatti E, Rasul NMA (2015) Seafloor spreading initiation: geophysical and geochemical constraints from the Thetis and Nereus Deeps, Central Red Sea. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a Young Ocean Basin. Springer, Berlin, Heidelberg, pp 79–98

    Google Scholar 

  • Ligi M, Bonatti E, Bosworth W, Ronca S (2019) Oceanization starts at depth during continental rupturing in the northern Red Sea. In: Rasul NM, Stewart ICF (eds) Geological setting, palaeoenvironment and archaeology of the Red Sea. Springer, Berlin, pp 131–157

    Chapter  Google Scholar 

  • Mahmoud S, Reilinger R, McClusky S, Vernant P, Tealeb A (2005) GPS evidence for northward motion of the Sinai Block: implications for E, Mediterranean tectonics. Earth Planet Sci Lett 238:217–224

    Article  Google Scholar 

  • Melson WG, O’Hearn T, Jarosewich E (2002) A data brief on the Smithsonian Abyssal Volcanic Glass Data File. Geochem Geophys Geosyst 3:1525–2027

    Article  Google Scholar 

  • Mckenzie DP, Davies D, Molnar P (1970) Plate tectonics of the Red Sea and east Africa. Nature 226 (5242):243–248

    Article  Google Scholar 

  • Miller PM, Barakat H (1988) Geology of the Safaga Concession, northern Red Sea, Egypt. Tectonophysics 153:123–136

    Article  Google Scholar 

  • Mitchell NC, Park Y (2014) Nature of crust in the central Red Sea. Tectonophysics 628:123–139

    Article  Google Scholar 

  • Mitchell NC, Ligi M, Ferrante V, Bonatti E, Rutter E (2010) Submarine salt flows in the central Red Sea. Geol Soc Am Bull 122:701–713

    Article  Google Scholar 

  • Mitchell NC, Ligi M, Feldens P, Hubscher C (2017) Deformation of a young salt giant: regional topography of the Red Sea Miocene evaporates. Basin Res 29:352–369

    Article  Google Scholar 

  • Mitchell NC, Ligi M, Rasul NMA (2019) Variations in Plio-Pleistocene deposition in the Red Sea. In: Rasul NMA, Stewart ICF (eds) Geological setting, palaeoenvironment and archaeology of the Red Sea. Springer, Berlin, pp 323–339

    Chapter  Google Scholar 

  • Mohamed EK, Hassoup A, Elenean AKM, Othman AAA, Hamed DMK (2015) Earthquakes focal mechanism and stress field pattern in the northeastern part of Egypt. NRIAG J Astron Geophys 4:205–221

    Article  Google Scholar 

  • Mohriak WU (2015) Rift basins in the Red Sea and Gulf of Aden: analogies with the Southern South Atlantic. In: Post PJ, Coleman JL Jr, Rosen NC, Brown DE, Roberts-Ashby T, Kahn P, Rowan M (eds) 34th annual GCSSEPM foundation Perkins-Rosen research conference petroleum systems in “Rift” basins, 13–16 Dec 2015, Houston, CD-ROM, pp 789–826

    Chapter  Google Scholar 

  • Mohriak WU, Leroy S (2013) Architecture of rifted continental margins and break-up evolution: insights from the South Atlantic, North Atlantic and Red Sea–Gulf of Aden conjugate margins. In: Mohriak WU, Danforth A, Post PJ, Brown DE, Tari GC, Nemčok M, Sinha ST (eds) Conjugate divergent margins. Geological Society, London, Special Publications, vol 369, pp 497–535

    Article  Google Scholar 

  • Morag N, Haviv I, Eyal M, Kohn BP, Feinstein S (2019) Early flank uplift along the Suez Rift: implications for the role of mantle plumes and the onset of the Dead Sea transform. Earth Planet Sci Lett (in press)

    Google Scholar 

  • Moretti I, Colletta B (1987) Spatial and temporal evolution of the Suez Rift subsidence. J Geodyn 7:151–168

    Article  Google Scholar 

  • Mougenot D, Al-Shakhis AA (1999) Depth imaging sub-salt structures: a case study in the Midyan Peninsula (Red Sea). GeoArabia 4:335–463

    Google Scholar 

  • Moustafa AR (1997) Controls on the development and evolution of transfer zones: the influence of basement structure and sedimentary thickness in the Suez rift and Red Sea. J Struct Geol 19:755–768

    Article  Google Scholar 

  • Nicolas A, Boudier F, Montigny R (1987) Structure of Zabargad Island and early rifting of the Red Sea. J Geophys Res 92:461–474

    Article  Google Scholar 

  • NOAA (2016) National Oceanic and Atmospheric Administration, National Centers for Environmental Information. World data service for geophysics—bathymetry and global relief grid extract. Grid extract. https://www.ngdc.noaa.gov/mgg/bathymetry/relief.html

  • Nyblade A, Park Y, Rodgers A, Al-Amri A (2006) Seismic structure of the Arabian Shield lithosphere and Red Sea margin. Mar Newsl 17:13–15

    Google Scholar 

  • Omar GI, Steckler MS (1995) Fission track evidence on the initial rifting of the Red Sea: two pulses, no propagation. Science 270:1341–1344

    Article  Google Scholar 

  • Omar GI, Kohn BP, Lutz TM, Faul H (1987) The cooling history of Silurian to Cretaceous alkaline ring complexes, south Eastern Desert, Egypt, as revealed by fission-track analysis. Earth Planet Sci Lett 83:94–108

    Article  Google Scholar 

  • Omar GI, Steckler MS, Buck WR, Kohn BP (1989) Fission-track analysis of basement apatites at the western margin of the Gulf of Suez rift, Egypt: evidence for synchroneity of uplift and subsidence. Earth Planet Sci Lett 94:316–328

    Article  Google Scholar 

  • Orszag-Sperber F, Harwood G, Kendall A, Purser BH (1998) A review of the evaporites of the Red Sea-Gulf of Suez rift. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics of rift basins: Red Sea-Gulf of Aden. Chapman and Hall, London, pp 409–426

    Chapter  Google Scholar 

  • Patton TL, Moustafa, AR, Nelson RA, Abdine SA (1994) Tectonic evolution and structural setting of the Suez Rift. In: Landon SM (ed) Interior rift basins, vol 59. American Association Petroleum Geologists Memoir, pp 7–55

    Google Scholar 

  • Perry SK, Schamel S (1990) The role of low-angle normal faulting and isostatic response in the evolution of the Suez rift, Egypt. Tectonophysics 174:159–173

    Article  Google Scholar 

  • Phillips JD (1970) Magnetic anomalies in the Red Sea. Philos Trans R Soc Lond Ser A Math Phys Sci 267:205–217

    Article  Google Scholar 

  • Plaziat J-C, Montenat C, Barrier P, Janin M-C, Orszag-Sperber F, Philobbos E (1998) Stratigraphy of the Egyptian syn-rift deposits: correlations between axial and peripheral sequences of the north-western Red Sea and Gulf of Suez and their relations with tectonics and eustacy. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics in rift basins–Red Sea–Gulf of Aden. Chapman and Hall, London, pp 211–222

    Chapter  Google Scholar 

  • Plaziat J-C, Reyss J-L, Choukri A, Cazala C (2008) Diagenetic rejuvenation of raised coral reefs and precision of dating. The contribution of the Red Sea reefs to the question of reliability of the Uranium-series datings of middle to late Pleistocene key reef-terraces of the world. Carnets de Géologie/Notebooks on Geology, Brest, Article 2008/04 (CG2008_A04)

    Google Scholar 

  • Pujols EJ (2011) Temporal and thermal evolution of extensional faulting in the central Gulf of Suez and detrital zircon (U-Th)/He constraints on the thermo-tectonic Paleozoic and Mesozoic history of the Sinai, Egypt. University of Kansas, Master of Science Thesis, 247 p

    Google Scholar 

  • Reilinger R, McClusky S, ArRajehi A (2015) Geodetic constraints on the geodynamic evolution of the Red sea. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin Heidelberg, pp 135–149

    Google Scholar 

  • Richardson M, Arthur MA (1988) The Gulf of Suez–northern Red Sea Neogene rift: a quantitive basin analysis. Mar Pet Geol 5:247–270

    Article  Google Scholar 

  • Ries AC, Shackleton RM, Graham RH, Fitches WR (1983) Pan-African structures, ophiolites and mélange in the Eastem Desert of Egypt: a traverse at 26°N. J Geol Soc 140(1):75–95

    Article  Google Scholar 

  • Rogers JJW, Ghuma MA, Nagy RM, Greenberg JK, Fullagar PD (1978) Plutonism in Pan-African belts and the geologic evolution of northeastern Africa. Earth Planet Sci Lett 39(1):109–117

    Article  Google Scholar 

  • Röser HA (1975) A detailed magnetic survey of the southern Red Sea. Geol Jahrb 13:131–153

    Google Scholar 

  • Roussel N, Purser BH, Orszag-Sperber F, Plaziat J-C, Soliman M, Al Haddad AA (1986) Géologie de la région de Qusier, Egypte. Documents et Travaux de l’Institut Géologique Albert de Lapparent, Paris 10:129–144

    Google Scholar 

  • Said R (1961) Tectonic framework of Egypt and its influence on distribution of foraminifera. AAPG Bull 45:198–218

    Google Scholar 

  • Said R (1962) The geology of Egypt. Elsevier, Amsterdam, p 377

    Google Scholar 

  • Said R (1990) Chapter 24. Cenozoic. In: Said R (ed) The geology of Egypt. A.A. Balkema, Rotterdam, pp 451–486

    Chapter  Google Scholar 

  • Salamon A, Hofstetter A, Garfunkel Z, Ron H (2003) Seismotectonics of the Sinai Subplate; the eastern Mediterranean region. Geophys J Int 155:149–173

    Article  Google Scholar 

  • Samuel MD, Saleeb-Roufaiel GS (1977) Lithostratigraphy and petrography of the Neogene sediments at Abu Ghusun, Um Mahara, Red Sea coast, Egypt. Beitrage zur Lithologi, Freiburg Forsch 323:47–56

    Google Scholar 

  • Scholz CH (1968) The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismol Soc Am 58:399–415

    Google Scholar 

  • Searle RC, Ross DA (1975) A geophysical study of the Red Sea axial trough between 20.5° and 22°N. Geophys J Roy Astron Soc 43:555–572

    Article  Google Scholar 

  • Şengör AMC, Burke K (1978) Relative timing of rifting on earth and its tectonic implications. Geophys Res Lett 5:419–421

    Article  Google Scholar 

  • Shi Y, Bolt BA (1982) The standard error of the magnitude-frequency b value. Bull Seismol Soc Am 72:1677–1687

    Google Scholar 

  • Shukri NM (1944) On the geology of the Brothers Islets-Northern Red Sea. Bull Fac Sci Cairo Univ 25:175–196

    Google Scholar 

  • Sinadinovski C, Aldamegh K, Ball P, Janoubi E, Afifi AK, Ion D, Nayak G, Borsato R (2017) Passive seismic experiment to understand the basement and crustal structure, Northern Red Sea. EGU General Assembly 2017. Geophys Res 19. EGU2017–5986 (Abstracts)

    Google Scholar 

  • Steckler MS, Berthelot F, Lyberis N, Le Pichon X (1988) Subsidence in the Gulf of Suez: implications for rifting and plate kinematics. Tectonophysics 153:249–270

    Article  Google Scholar 

  • Stern RJ (1979) Late precambrian ensimatic volcanism in the central eastern desert of Egypt [Ph.D. thesis]. San Diego, University of California, 210 p

    Google Scholar 

  • Stern RJ (1981) Petrogenesis and tectonic setting of late Precambrian ensimatic volcanic rocks, central eastern desert of Egypt. Precambr Res 16(3):195–230

    Article  Google Scholar 

  • Stern RJ, Gottfried D, Hedge CE (1984) Late Precambrian rifting and crustal evolution in the Northeastern Desert of Egypt. Geology 12:168–172

    Article  Google Scholar 

  • Stern RJ, Hedge CE (1985) Geochronologic and isotopic constraints on Late Precambrian crustal evolution in the Eastern Desert of Egypt. Am J Sci 285:97–127

    Article  Google Scholar 

  • Stockli DF (2005) Application of low-temperature thermochronometry to extensional tectonic settings. Rev Mineral Geochem 58(1):411–448

    Article  Google Scholar 

  • Stockli DF (2009) Tectonic evolution of the Tethyan margin of Gondwana from NE Africa to the Zagros and its ramifications for the Zagros collision-a detrital zircon (U-Th)/He thermochronometry perspective. Geol Soc Am Annu Mtg. Portland (abstracts)

    Google Scholar 

  • Stockli DF, Bosworth W (2019) Timing of extensional faulting along the magma-poor central and northern Red Sea rift margin—transition from regional extension to necking along a hyperextended rifted margin. In: Rasul NM, Stewart ICF (eds) Geological setting, palaeoenvironment and archaeology of the Red Sea. Springer, Berlin, pp 81–111

    Google Scholar 

  • Sturchio NC, Sultan M, Batiza R (1983) Geology and origin of Meatiq Dome, Egypt: a precambrian metamorphic core complex? Geology 11(2):72

    Article  Google Scholar 

  • Suess E (1891) Die Brüche des östlichen Afrika. In: Beitrage zur geologischen Kentniss des östlichen Afrika. Denkscriƒten Kaiserlichen Akademie der Wissenshaƒten, Wien, Mathematisch-Naturwiseen Klasse 58:555–584

    Google Scholar 

  • Sultan M, Arvidson RE, Duncan IJ, Stern RJ, El Kaliouby B (1988) Extension of the Najd shear system from Saudi Arabia to the central eastern desert of Egypt based on integrated field and LANDSAT observations. Tectonics 7(6):1291–1306

    Article  Google Scholar 

  • Szymanski E, Stockli DF, Johnson PR, Hager C (2016) Thermochronometric evidence for diffuse extension and two-phase rifting within the Central Arabian Margin of the Red Sea Rift. Tectonics 35:2863–2895

    Article  Google Scholar 

  • Tang Z, Julià J, Zahran H, Mai PM (2016) The lithospheric shear-wave velocity structure of Saudi Arabia: young volcanism in an old shield. Tectonophysics 680:8–27

    Article  Google Scholar 

  • Taviani M (1998) Post-Miocene reef faunas of the Red Sea: glacio-eustatic controls. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics in rift basins: Red Sea-Gulf of Aden. Chapman and Hall, London, pp 574–582

    Chapter  Google Scholar 

  • Tewfik N, Ayyad M (1984) Petroleum exploration in the Red Sea shelf of Egypt. In: Proceedings of the 6th exploration seminar. Egyptian General Petroleum Corporation and Egypt Petroleum Exploration Society, Mar 1982, Cairo, vol 1, pp 159–180

    Google Scholar 

  • Thybo H, Nielsen CA (2009) Magma-compensated crustal thinning in continental rift zones. Nature 457:873–876

    Article  Google Scholar 

  • Tinti S, Mulargia F (1987) Confidence intervals of b-values for grouped magnitudes. Bull Seismol Soc Am 77:2125–2134

    Google Scholar 

  • Utsu T (1965) A method for determining the value of b in the formula logN = a-bM showing the magnitude-frequency relation for earthquakes. Geophys Bull Hokkaido Univ 13:99–103

    Google Scholar 

  • Vermeesch P (2012) On the visualization of detrital age distributions, pp 1–6. http://www.ucl.ac.uk/~ucfbpve/papers/VermeeschChemGeol2012/

    Article  Google Scholar 

  • Vermeesch P, Avigad D, McWilliams MO (2009) 500 my of thermal history elucidated by multi-method detrital thermochronology of North Gondwana Cambrian sandstone (Eilat area, Israel). Geol Soc Am Bull 121:1204–1216

    Article  Google Scholar 

  • Voggenreiter W, Hötzl H, Mechie J (1988) Low-angle detachment origin for the Red Sea Rift system? Tectonophysics 150:51–75

    Article  Google Scholar 

  • Volker F, McCulloch MT (1993) Submarine basalts from the Red Sea: New Pb, Sr, and Nd isotopic data. Geophys Res Lett 20:927–930

    Article  Google Scholar 

  • Volker F, McCulloch MT, Altherr R (1993) Submarine basalts from the Red Sea: New Pb, Sr, and Nd isotopic data. Geophys Res Lett 20(10):927–930

    Article  Google Scholar 

  • Waite GP, Smith RB (2002) Seismic evidence for fluid migration accompanying subsidence of the Yellowstone caldera. J Geophys Res 107(2177):1–15

    Google Scholar 

  • Weaver BL (1991) The origin of ocean island end-member compositions: trace element and isotopic constraints. Earth Planet Sci Lett 104:381–397

    Article  Google Scholar 

  • Winn RD Jr, Crevello PD, Bosworth W (2001) Lower Miocene Nukhul Formation of Gebel el Zeit, Egypt: sedimentation and structural movement during early Gulf of Suez rifting. AAPG Bull 85:1871–1890

    Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Article  Google Scholar 

  • Wyss M (1973) Towards a physical understanding of the earthquake frequency distribution. Geophys J R Astr Soc 31:341–359

    Article  Google Scholar 

  • Yadav RBS, Tripathi JN, Shanker D, Rastogi BK, Das MC, Kumar V (2011) Probabilities for the occurrences of medium to large earthquakes in northeast India and adjoining region. Nat Hazards 56:145–167

    Article  Google Scholar 

  • Younes AI, McClay KR (2002) Development of accommodation zones in the Gulf of Suez-Red Sea rift, Egypt. Am Assoc Pet Geol Bull 86:1003–1026

    Google Scholar 

  • Youssef MI (1957) Upper Cretaceous rocks in Kosseir area. Bull Inst Desert Egypte 7:35–54

    Google Scholar 

Download references

Acknowledgements

We appreciate the Editors’ interest and proposal that initiated this review of the Egyptian Red Sea basin. Many colleagues have helped improve our understanding of this complex setting. We particularly thank Enrico Bonatti, the late Kevin Burke, Kenneth Carlson, René Guiraud, the late Giff Kessler II, Edgardo Pujols, Dave Smith, and Marco Taviani for fruitful discussions. Eugene Szymanski provided a very helpful review that assisted us in clarifying many points.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Bosworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bosworth, W., Khalil, S.M., Ligi, M., Stockli, D.F., McClay, K.R. (2020). Geology of Egypt: The Northern Red Sea. In: Hamimi, Z., El-Barkooky, A., Martínez Frías, J., Fritz, H., Abd El-Rahman, Y. (eds) The Geology of Egypt. Regional Geology Reviews. Springer, Cham. https://doi.org/10.1007/978-3-030-15265-9_9

Download citation

Publish with us

Policies and ethics