Skip to main content

Theory, Simulation, Analysis and Synthesis for Metallic Microlattice Structures

  • Chapter
  • First Online:
Metallic Microlattice Structures

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSSTME))

Abstract

The focus for applications in this book are core materials in sandwich beams and panels, and energy absorbing devices. Hence, microlattice structures will not only be subject to elastic deformation, but also to plastic deformation, buckling and rupture. Also, these responses may take place under impact loading. Thus, theoretical models developed will have to address these non linear and transient effects. The simplest lattice finite element model is modelling the strut as a set of beams. Such an approach is appropriate for complete modelling of large scale microlattice structures. For more detailed modelling, the selected number of cells can be modelled using three dimensional solid elements. Such models discriminate three dimensional plasticity, material rupture and the interaction between cells. For modelling large scale microlattice structures, homogenisation is also an appropriate approach. This latter approach has been followed for foams for a number of years, but modelling localised plasticity, buckling and rupture is problematic. Analytic modelling of microlattice behaviour is useful for parametric investigation and to define and investigate specific structural cases. The synthesis of optimal microlattice structures is problematic given non linearities in response issues. Formal optimisation approaches are not currently possible, but the distinct approach of generative design is relevant. These approaches are discussed in terms of the specific structural applications of interest in this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • R. Alberdi, K. Khandelwal, Design of periodic elasto plastic energy dissipating microstructures. Struct. Mult. Opt. (2018). https://doi.org/10.1007/s00158-018-2076-2

  • A.O. Aremu, J.P.J. Brennan Craddock, A. Panesar et al., The voxel based method of constructing and skinning conformal and functionally graded lattice structures suitable for additive manufacturing. Addit. Manuf. 13, 1–13 (2017)

    Article  Google Scholar 

  • A. Asadpoure, L. Valdevit, Topology optimisation of lightweight periodic lattices under simultaneous compressive and shear stiffness constraints. Int. J. Sol. Struct. 60–61, 1–16 (2015)

    Article  Google Scholar 

  • J.V. Carstensen, R. Lotfi, J.K. Guest, et al., Topology optimisation of cellular materials with maximised energy absorption, in Proceedings of ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Boston, Massachusetts, USA, pp. 1–10, 2–5 Aug 2015 (2015)

    Google Scholar 

  • P.S. Chang, D.W. Rosen, The size matching and scaling method: a synthesis method for the design of mesoscale cellular structures. Int. J. Comp. Integ. Manuf. 26(10), 907–927 (2013)

    Google Scholar 

  • D. Chen, M. Skouras, B. Zhu, et al., Computational discovery of extremal microstructure families. Sci. Adv. 4, eaao7005 (2018)

    Google Scholar 

  • V.S. Deshpande, N.A. Fleck, M.F. Ashby, Effective properties of the octet truss lattice material. J. Mech. Phys. Sol. 49, 1747–1769 (2001)

    Article  Google Scholar 

  • M. Doyoyo, J.W. Hu, Multi axial failure of metallic strut lattice materials composed of short and slender struts. Int. J. Sol. Struct. 43, 6115–6139 (2006)

    Article  Google Scholar 

  • H.L. Fan, D.N. Fang, F.N. Jing, Yield surfaces and micro failure mechanism of block lattice truss materials. Mat. Des. 29, 2038–2042 (2008)

    Article  Google Scholar 

  • R. Gümrük, R.A.W. Mines, S. Karadeniz, Determination of strain-rate sensitivity of microstruts manufactured using the selective laser melting method. J. Mat. Eng. Perf. (ASM) 27(3), 1016–1032 (2018)

    Article  Google Scholar 

  • R. Gümrük, R.A.W. Mines, Compressive behaviour of stainless steel microlattice structures. Int. J. Mech. Sci. 68,125–139 (2013)

    Google Scholar 

  • B. Harl, J. Predan, N. Gubeljak et al., On configuration based optimal design of load carrying lightweight parts. Int. J. Simul. Model 16(2), 219–228 (2017)

    Article  Google Scholar 

  • J.W. Hu, T. Park, Continuum models for the plastic deformation of octet truss lattice materials under multi axial loading. J. Eng. Mat. Tech. (ASME). 135, 021004—1–11 (2013)

    Google Scholar 

  • J.M. Hundley, E.C. Clough, A.J. Jacobsen, The low velocity impact response of sandwich panels with lattice core reinforcement. Int. J. Imp. Eng. 84, 64–77 (2015)

    Article  Google Scholar 

  • D. Jafari, W.W. Wits, The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion application: a review. Renew. Sust. Energy Rev. 91, 420–442 (2018)

    Article  Google Scholar 

  • G. Labeas, E. Ptochos, Homogenization of selective laser melting cellular material for impact performance simulation. Int. J. Struct. Integrity 6(4), 439–450 (2015)

    Google Scholar 

  • G.N. Labeas, M.M. Sunaric, Investigation on the static response and failure process of metallic open lattice cellular structures. Strain 46(2), 1–10 (2008)

    Google Scholar 

  • P. Li, Constitutive and failure behaviour in selective laser melting method stainless steel microlattice structures. Mat. Sci. Eng. A 622, 114–120 (2015)

    Article  Google Scholar 

  • M.H. Luxner, J. Stampfl, H.E. Pettermann, Finite element modelling concepts and linear analyses of 3D regular open cell structures. J. Mat. Sci. 40, 5859–5866 (2005)

    Article  Google Scholar 

  • M.H. Luxner, A. Woesz, J. Stampfl et al., The finite element study on the effects of disorder in cellular structures. Acta Biomater. 5, 381–390 (2009)

    Article  Google Scholar 

  • M.C. Messner, Optimal lattice structured materials. J. Mech. Phys. Sol. 96, 162–183 (2016)

    Article  MathSciNet  Google Scholar 

  • R.A.W. Mines, S. Tsopanos, Y. Shen et al., Drop weight impact behaviour of sandwich panels with metallic microlattice cores. Int. J. Imp. Eng. 60, 120–132 (2013)

    Article  Google Scholar 

  • D. Mohr, Mechanism based a multi surface plasticity model for ideal stress lattice materials. Int. J. Sol. Struct. 42, 3235–3260 (2005)

    Article  Google Scholar 

  • J. Nguyen, S. Park, D. Rosen, Heuristic optimisation method for cellular structure design of lightweight components. Int. J. Prec. Eng. Manuf. 14(6), 1071–1078 (2013)

    Google Scholar 

  • M. Osanov, J.K. Guest, Topology optimisation for architected materials design. Am. Rev. Mat. Res. 46, 211–233 (2016)

    Article  Google Scholar 

  • Z. Ozdemir, A. Tyas, R. Goodall et al., Energy absorption in lattice structures in dynamics: nonlinear FE simulations. Int. J. Imp. Eng. 102, 1–15 (2017)

    Article  Google Scholar 

  • A. Panesar, M. Abdi, D. Hickman et al., Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing. Addit. Manuf. 19, 81–94 (2018)

    Article  Google Scholar 

  • E. Ptochos, G. Labeas, Shear modulus determination of cuboid metallic open lattice cellular structures by analytical, numerical and homogenisation methods. Strain 48, 415–429 (2012)

    Article  Google Scholar 

  • C.J. Ro, C.S. Roper, Analytical models of the geometric properties the solid and hollow architected lattice cellular materials. J. Mat. Res. 33(3), 264–273 (2017)

    Article  Google Scholar 

  • K. Shea, R. Aish, M. Gourtovaia, Towards integrated performance driven generative design tools. Autom. Constr. 14, 253–264 (2005)

    Article  Google Scholar 

  • Y. Shen, W. Cantwell, R. Mines et al., Low velocity impact performance of lattice structure core based sandwich panels. J. Comp. Mat. 48(25), 3153–3167 (2014)

    Article  Google Scholar 

  • M. Smith, Z. Guan, W.J. Cantwell, Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int. J. Mech. Sci. 67, 28–41 (2013)

    Article  Google Scholar 

  • T. Stankovic, J. Mueller, P. Egan, et al., A generalized optimality criteria method for optimisation of additively-manufactured multi material lattice structures. J. Mech. Des. (ASME) 137, 111705-1–12 (2015)

    Google Scholar 

  • F. Tamburrino, S. Graziosi, M. Bordegoni, The design process of additively manufactured meso scale lattice structures: a review. J. Comput. Info. Sci. Eng. 18(4), 040801-1–16 (2018)

    Google Scholar 

  • D. Tancogne-Dejean, A. Spierings, D. Mohr, Additively manufactured metallic microlattice materials for high specific energy absorption under static and dynamic loading. Acta Mater. 116, 14–28 (2016)

    Article  Google Scholar 

  • Y. Tang, Y.F. Zhao, Design method for lattice skin structures fabricated by additive manufacturing, in Proceedings of ASME 2014 International Mechanical Engineering Congress and Exposition IMECE, Montreal, Quebec, Canada, pp. 1–9, 14–20 Nov 2014 (2014)

    Google Scholar 

  • A. Tedeschi, AAD—Algorithms aided design: parametric strategies using Grasshopper (Le Penseur Publisher. Potenza, Italy, 2014)

    Google Scholar 

  • I. Ullah, M. Brandt, S. Feih, Failure and energy absorption characteristics of advanced 3D truss core structures. Mat. Des. 92, 937–948 (2016)

    Google Scholar 

  • K. Ushijima, W.J. Cantwell, D.H. Chen, Prediction of the mechanical properties of microlattice structures subjected to multi axial loading. Int. J. Mech. Sci. 68, 47–55 (2013)

    Article  Google Scholar 

  • K. Ushijima, W.J. Cantwell, R.A.W. Mines et al., An investigation into the compressive properties of stainless steel microlattice structures. J. Sand. Struct. Mater. 13(3), 303–329 (2010)

    Article  Google Scholar 

  • L. Valdevit, A.J. Jacobsen, J.R. Greer et al., Protocols for the optimal design of multi functional cellular structures: from hypersonic to micro architected materials. J. Am. Ceram. Soc. 94(S1), 1–20 (2011)

    Google Scholar 

  • J. Xiong, R.A.W. Mines, R. Ghosh et al., Advanced microlattice materials. Adv. Eng Mater. 17(9), 1253–1264 (2015)

    Article  Google Scholar 

  • Z. Xue, J.W. Hutchinson, Constitutive model for quasi static deformation of metallic sandwich cores. Int. J. Num. Meth. Eng. 61, 2205–2238 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Mines .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mines, R. (2019). Theory, Simulation, Analysis and Synthesis for Metallic Microlattice Structures. In: Metallic Microlattice Structures. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-15232-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15232-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15231-4

  • Online ISBN: 978-3-030-15232-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics