Skip to main content

Additive Manufacturing Processes and Materials for Metallic Microlattice Structures Using Selective Laser Melting, Electron Beam Melting and Binder Jetting

  • Chapter
  • First Online:
Metallic Microlattice Structures

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSSTME))

Abstract

The additive manufacturing processes discussed here have been selected for their significance for the selected structural applications, e.g. core materials and energy absorbing materials. Selective laser melting and electron beam melting are mature (industrial) processes, whereas binder jetting (and associated techniques) is currently under intense development. As far as selective laser melting and electron beam melting are concerned, the controlling parameter is the beam scanning strategy, which defines the dimensions and quality of the microlattice. Also, the parent material will influence the realisation process, the final quality of the microlattice and structural performance. In this discussion, three main materials will be discussed: namely, stainless steel 316L, titanium alloy Ti 64, and aluminium alloy AlSi10/12Mg. Stainless steel 316L is widely discussed in the literature, and Ti 64 and AlSi10/12Mg are lower density but more highly reactive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M.F. Ashby, A.L. Greer, Metallic glasses as structural materials. Scr. Mater. 54, 321–326 (2006)

    Article  Google Scholar 

  • A. Bandyopadhyay, B. Heer, Additive manufacturing of multi material structures. Mat. Sci. Eng. R 129, 1–16 (2018)

    Google Scholar 

  • A. Bose, C.A. Schuh, J.C. Tobia et al., Traditional and additive manufacturing of a new tungsten heavy alloy alternative. Int. J. Refractory Mat. Hard Mat. 73, 22–28 (2018)

    Article  Google Scholar 

  • D. Bracket, Binder and sinter additive manufacturing flexibility (2018), www.tctmagazine.com/blogs/guest-column/binder-and-sinter-additive-manufacturing-flexibility/ (Accessed 18th November 2018)

  • A.H. Brothers, D.C. Dunand, Ductile bulk metallic glass foams. Adv. Mater. 17(4), 484–486 (2005)

    Article  Google Scholar 

  • Concept Laser (2018), www.concept-laser.de/technologie.html (Accessed 19th November 2018)

  • V. Crupi, E. Kara, G. Epasto et al., Static behavior of lattice structures produced via direct metal laser sintering technology. Mat. Des. 135, 246–256 (2017)

    Google Scholar 

  • C. De Formanoir, M. Suard, R. Dendievel et al., Improving the mechanical efficiency of electron beam melted titanium lattice structures by chemical etching. Add. Manuf. 11, 71–76 (2016)

    Google Scholar 

  • Desktop Metal (2018), www.desktopmetal.com/products/studio/ (Accessed 19th November 2018)

  • S. Ghouse, S. Babu, R.J. Van Arkel et al., The influence of laser parameters and scanning strategies on the mechanical properties of stochastic porous materials. Mat. Des. 131, 498–508 (2017)

    Google Scholar 

  • I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping and Direct Digital Manufacturing, 2nd edn. (Springer, New York, USA, 2015)

    Book  Google Scholar 

  • P.K. Gokuldoss, S. Kollar, J. Eckert, Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting—selection guidelines. Materials 10(6), 672–692 (2017)

    Article  Google Scholar 

  • R. Gümrük, A. Usun, R. Mines, The enhancement of the mechanical performance of stainless steel microlattice structures using electroless plated nickel coatings. MDPI Proc. 2(8), 494 (2018)

    Google Scholar 

  • R. Hasan, Progressive collapse of titanium alloy microlattice structures manufactured using selective laser melting. Ph.D. Thesis, University of Liverpool, 2013

    Google Scholar 

  • R. Hasan, R. Mines, P. Fox, Characterisation of selectively laser melted TI 6Al 4V microlattice struts. Procedia Eng. 10, 536–541 (2011)

    Article  Google Scholar 

  • Hewlett Packard (2018a), www8.hp.com/us/printers/3d-printers/metals.html (Accessed 19th November 2018)

  • Hewlett Packard (2018b), www8.hp.com/us/printers/3d-printers/metals.html (Accessed 19th November 2018)

  • J. Hiller, H. Lipson, Design and analysis of digital materials for physical 3D voxel printing. Rap. Proto. J. 15(2), 137–149 (2009)

    Article  Google Scholar 

  • Y.J. Huang, J. Shen, J.F. Sun, Bulk metallic glasses: smaller is softer. Appl. Phys. Lett. 90, 081919-1–3 (2007)

    Google Scholar 

  • A.E. Jakus, S.L. Taylor, N.R. Geisendorfer et al., Metallic architectures from 3D printed powder fused liquid inks. Adv. Funct. Mat. 25(45), 1–10 (2015)

    Google Scholar 

  • J.P. Kruth, P. Mercelis, J. Van Vaerenbergh et al., Binding mechanisms in selective laser sintering and selective laser melting. Rap. Prot. J. 11(1), 26–36 (2005)

    Article  Google Scholar 

  • G. Kumar, A. Desai, J. Schroers, Bulk metallic glass: the smaller the better. Adv. Mat. 23, 461–476 (2011)

    Article  Google Scholar 

  • X. Li, H.J. Willy, S. Cheng et al., Selective laser melting of stainless steel and alumina composite: experimental and simulation studies on processing parameters, microstructure and mechanical properties. Mat. Des. 145, 1–10 (2018)

    Google Scholar 

  • L. Liu, Q. Ding, Y. Zhong et al., Dislocation network in additive manufactured steel breaks strength—ductility trade off. Mat. Today 21(4), 354–361 (2017)

    Article  Google Scholar 

  • Z. Liu, W. Chen, J. Carstensen et al., 3D metallic glass structures. Acta Mater. 105, 35–43 (2016)

    Article  Google Scholar 

  • M. McMillan, M. Leary, M. Brandt, Computationally efficient finite difference method for metallic additive manufacturing: a reduced order DFAM tool applied to SLM. Mat. Des. 132, 226–243 (2017)

    Google Scholar 

  • W. Meiners, C. Over, K. Wissenbach, et al., Direct generation of metal parts and tools by selective laser powder re-melting (SLPR), in Proceedings of Solid Freeform Fabrication Symposium, Austin, Texas, USA (1999)

    Google Scholar 

  • M.C. Messner, A fast efficient direct sizing method for slender member structures. Add. Manuf. 18, 213–220 (2017)

    Google Scholar 

  • J.O. Milewski, Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants and Custom Jewelry (Springer Series in Materials Science 258) (Springer, New York, USA, 2017)

    Book  Google Scholar 

  • R.A.W. Mines, S. Tsopanos, Y. Shen et al., Drop weight impact behaviour of sandwich panels with metallic microlattice cores. Int. J. Imp. Eng. 60, 120–132 (2013)

    Article  Google Scholar 

  • M. Molich-Hou, What exactly makes Xact Metals’s metal 3D printing so cheap? (2017), www.engineering.com/3DPrinting/3DPrintingAricles/ArticleID/15300 (Accessed July 2018)

  • L. Mullen, R.C. Stamp, W.K. Brooks, et al., Selective laser melting: a regular unit cell approach for the manufacture of porous, titanium, bone in growth constructs, suitable for orthopedic applications. J. Biomat. Mat. Res. 89(B), 325–334

    Google Scholar 

  • S. Pauly, L. Lober, R. Petters et al., Processing metallic glasses by selective laser melting. Mat. Today 16(1/2), 37–41 (2013)

    Article  Google Scholar 

  • I. Polmear, Light Alloys: From Traditional Alloys to Nano Crystals, 4th edn. (Butterworth and Heinemann, Oxford, UK, 2006)

    Google Scholar 

  • G. Pyka, A. Burakowski, G. Kerckhofs et al., Surface modification of Ti 6Al 4V open porous structures produced by additive manufacturing. Adv. Eng. Mat. 14(6), 363–370 (2012)

    Article  Google Scholar 

  • B. Redwood, F. Schoffer, B. Garret, The 3D Printing Handbook: Technology, Design and Applications. 3D Hubs BV, Netherlands (2017)

    Google Scholar 

  • O. Rehme, Cellular Design for Laser Freeform Fabrication (Cuvillier Verlag, Gottingen, Germany, 2010)

    Google Scholar 

  • M.S. Saleh, C. Hu, R. Panat, Three dimensional micro architected materials and devices using nano particle assembly by pointwise spatial printing. Sci. Adv. 3, e1601986 (2017)

    Article  Google Scholar 

  • S.L. Sing, F.E. Wiria, W.Y. Yeong, Selective laser melting of lattice structures: a statistical approach to manufacturability and mechanical behavior. Robot. Comput. Integr. Manuf. 49, 170–180 (2018)

    Article  Google Scholar 

  • C.J. Smith, F. Derguti, E. Hernandez Nava et al., Dimensional accuracy of electron beam melting (EBM) additive manufacture with regard to weight optimized truss structures. J. Mat. Proc. Tech. 229, 128–138 (2016)

    Article  Google Scholar 

  • M. Suard, G. Martin, P. Lhuissier et al., Mechanical equivalent diameter of single struts for the stiffness prediction of lattice structures produced by electron beam melting. Add. Manuf. 8, 124–131 (2015)

    Google Scholar 

  • T. Tancogne Dejean, A.B. Spierings, D. Mohr, Additively-manufactured microlattice materials for high specific energy absorption under static and dynamic loading. Acta Mater. 116, 14–28 (2016)

    Article  Google Scholar 

  • Y. Tang, Y. Zhou, T. Hoff et al., Elastic modulus of 316L stainless steel lattice structures fabricated by binder jetting process. Mat. Sci. Tech. 32(7), 648–656 (2016)

    Article  Google Scholar 

  • M.K. Thompson, G. Moroni, T. Vaneker et al., Design for additive manufacturing: trends, opportunities, considerations and constraints. CIRP Ann. 65(2), 737–760 (2016)

    Article  Google Scholar 

  • S. Tsopanos, R.A.W. Mines, S. McKown, et al., The influence of processing parameters on the mechanical properties of selectively laser melted stainless steel microlattice structures. J. Manuf. Sci. Eng. (ASME) 132, 041011-1–12 (2010)

    Google Scholar 

  • M. Vaezi, S. Chianrabutra, B. Mellor et al., Multiple material additive manufacturing—Part 1, A review. Virt. Phys. Protot. 8(1), 19–50 (2018)

    Article  Google Scholar 

  • S. Vangapally, K. Argarwal, A. Sheldon et al., Effect of lattice design and process parameters on dimensional and mechanical properties of binder jet additively manufactured stainless steel 316 bone scaffolds. Procedia Manuf. 10, 750–759 (2017)

    Article  Google Scholar 

  • R. Vrana, D. Koutny, D. Palousek et al., Selective laser melting strategy for fabrication of thin struts usable in lattice structures. Materials (MDPI) 11, 1763 (2018)

    Article  Google Scholar 

  • B. Vrancken, L. Thijs, J.P. Kruth et al., Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting. Acta Mater. 68, 150–158 (2014)

    Article  Google Scholar 

  • A. Vyatskikh, S. Delalande, A. Kudo et al., Additive manufacturing of 3D nano architected metals. Nat. Commun. 9(593), 1–8 (2018)

    Google Scholar 

  • Y.M. Wang, T. Voisin, J.T. McKeown et al., Additively-manufactured hierarchical stainless steel with high strength and ductility. Nat. Mat. 17, 63–71 (2018)

    Article  Google Scholar 

  • Q. Wei, S. Li, C. Han, W. Li et al., Selective laser melting of stainless steel/nano hydroxyapatite composites for medical applications: microstructure, element distribution, crack and mechanical properties. J. Mat. Proc. Tech. 222, 444–453 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Mines .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mines, R. (2019). Additive Manufacturing Processes and Materials for Metallic Microlattice Structures Using Selective Laser Melting, Electron Beam Melting and Binder Jetting. In: Metallic Microlattice Structures. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-15232-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15232-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15231-4

  • Online ISBN: 978-3-030-15232-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics