Advertisement

Some Fundamental Structural Ideas for Conventional Metallic Lattice Structures

  • Robert MinesEmail author
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

The aim of Chap.  2 is to give a number of fundamental ideas on lattice structures, independent of the use of additive manufacturing technology. These ideas have been developed for a number of years for conventional structures. Aspects covered will be (a) lattice structures as a cellular material, (b) general nomenclature for lattice structures, (c) lattice structures as core materials in sandwich panels, and (d) impact energy absorption in conventional metallic structures. In this way, relevant rigorous engineering science ideas will be identified, and the potential for applying these ideas to additively manufactured microlattice structures will be highlighted.

Keywords

Cellular material Lattice topologies Sandwich structures Core materials Structural impact 

References

  1. S. Abrate, Impact on Composites Structures (Cambridge University Press, Cambridge UK, 1998)CrossRefGoogle Scholar
  2. H.G. Allen, Analysis and Design of Structural Sandwich Panels (Pergamon Press, Oxford, UK, 1969)Google Scholar
  3. M. Alves, Material constitutive law for large strains and strain rates. J. Eng. Mech. 126, 215–218 (2000)Google Scholar
  4. M.F. Ashby, The properties of foams and lattices. Phil. Trans. R. Soc. A 364, 15–30 (2006)Google Scholar
  5. M.F. Ashby, A. Evans, N.A. Fleck et al., Metal Foams: A Design Guide (Butterworth Heinemann, Woburn, USA, 2000)Google Scholar
  6. Y. Bao, T. Wierzbicki, A comparative study on various ductile crack formation criteria. J. Eng. Mat. Tech. (ASME) 126, 314–324 (2004)CrossRefGoogle Scholar
  7. V.S. Deshpande, N.A. Fleck, M.F. Ashby, Effective properties of the octet truss lattice materials. J. Mech. Phys. Sol. 49, 1747–1769 (2001)CrossRefGoogle Scholar
  8. L. Dong, V. Deshpande, H.N.G. Wadley, Mechanical response of Ti-6Al-4V octet truss lattice structures. Int. J. Sol. Struct. 60–61, 107–124 (2015)CrossRefGoogle Scholar
  9. L. Dong, W.P. King, M. Raleigh et al., A micro fabrication approach for making metallic mechanical metamaterials. Mat. Des. 160, 147–168 (2018)Google Scholar
  10. E. Dragoni, Optimal mechanical design of tetrahedral truss cores for sandwich constructions. J. Sand. Struct. Mat. 15(4), 464–484 (2013)CrossRefGoogle Scholar
  11. N.A. Fleck, V.S. Deshpande, M.F. Ashby, Micro architectured materials: past, present and future. Proc. R. Soc. A 466, 2495–2516 (2010)CrossRefGoogle Scholar
  12. L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, 2nd edn. (Cambridge University Press, Cambridge UK, 1997)CrossRefGoogle Scholar
  13. N. Jones, Structural Impact, 2nd edn. (Cambridge University Press, Cambridge, UK, 2012)Google Scholar
  14. G. Lu, T. Yu, Energy Absorption of Structures and Materials (CRC Press (Woodhead Publishing Limited), Cambridge, UK, 2003)Google Scholar
  15. D. Mohr, Mechanism based multi surface plasticity model for ideal truss lattice material. Int. J. Sol. Struct. 42, 3235–3260 (2005)CrossRefGoogle Scholar
  16. D.T. Queheillalt, H.N.G. Wadley, Hollow pyramidal lattice truss structures. Int. J. Mat. Res. 102(4), 389–400 (2011)CrossRefGoogle Scholar
  17. X.M. Qui, J. Zhang, T.X. Yu, Collapse of periodic planar lattices under uniaxial compression, part II: dynamic crushing based on finite element simulation. Int. J. Imp. Eng. 36, 1231–1241 (2009)CrossRefGoogle Scholar
  18. M. Sasso, G. Newaz, D. Amodio, Material characterization at high strain rate by Hopkinson bar tests and finite element optimisation. Mat. Sci. Eng. A 487, 289–300 (2008)Google Scholar
  19. Y. Sun, Q.M. Li, Dynamic compressive behaviour of cellular materials: a review of phenomena, mechanism and modelling. Int. J Imp. Eng. 112, 74–115 (2018)CrossRefGoogle Scholar
  20. I. Ullah, M. Brandt, S. Feih, Failure and energy absorption characteristics of advanced 3D truss core structures. Mat. Des. 92, 937–948 (2016)Google Scholar
  21. H.N.G. Wadley, Multi functional periodic cellular metals. Phil. Trans. R. Soc. A 364, 31–68 (2006)CrossRefGoogle Scholar
  22. H.N.G. Wadley, N.A. Fleck, A.G. Evans, Fabrication and structural performance of periodic cellular metal sandwich structures. Comp. Sci. Tech. 63, 2331–2343 (2003)CrossRefGoogle Scholar
  23. D. Zenkert, An Introduction to Sandwich Construction (EMAS Limited, Cradley Heath, UK, 1997)Google Scholar
  24. H.X. Zhu, N.J. Mills, J.F. Knott, Analysis of the high strain compression of open cell foams. J. Mech. Phys. Sol. 45(11/12), 1875–1899 (1997)CrossRefGoogle Scholar
  25. F.W. Zok, R.M. Latture, M.R. Begley, Periodic truss structures. J. Mech. Phys. Sol. 96, 184–203 (2016)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of EngineeringUniversity of LiverpoolLiverpoolUK

Personalised recommendations