Maximal and Averaging Operators

  • Petteri Harjulehto
  • Peter Hästö
Part of the Lecture Notes in Mathematics book series (LNM, volume 2236)


For the rest of the book, we always consider subsets of \({\mathbb {R}^n}\) and the Lebesgue measure. By Ω we always denote an open set in \({\mathbb {R}^n}\).


  1. 33.
    L. Diening, Maximal function on Orlicz–Musielak spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129, 657–700 (2005)MathSciNetCrossRefGoogle Scholar
  2. 34.
    L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev spaces with Variable Exponents, volume 2017 of Lecture Notes in Mathematics (Springer, Heidelberg, 2011)zbMATHGoogle Scholar
  3. 40.
    L. Evans, R. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics (CRC Press, Boca Raton, FL, 1992)Google Scholar
  4. 77.
    A. Lerner, Some remarks on the Hardy–Littlewood maximal function on variable L p spaces. Math. Z. 251, 509–521 (2005)MathSciNetCrossRefGoogle Scholar
  5. 91.
    P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, volume 44 of Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 1995)CrossRefGoogle Scholar
  6. 124.
    E. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30 (Princeton University Press, Princeton, NJ, 1970)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Petteri Harjulehto
    • 1
  • Peter Hästö
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of TurkuTurkuFinland

Personalised recommendations