Skip to main content

On the Nonequilibrium Entropy of Large and Small Systems

  • Conference paper
  • First Online:
Stochastic Dynamics Out of Equilibrium (IHPStochDyn 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 282))

Included in the following conference series:

Abstract

Thermodynamics makes definite predictions about the thermal behavior of macroscopic systems in and out of equilibrium. Statistical mechanics aims to derive this behavior from the dynamics and statistics of the atoms and molecules making up these systems. A key element in this derivation is the large number of microscopic degrees of freedom of macroscopic systems. Therefore, the extension of thermodynamic concepts, such as entropy, to small (nano) systems raises many questions. Here we shall reexamine various definitions of entropy for nonequilibrium systems, large and small. These include thermodynamic (hydrodynamic), Boltzmann, and Gibbs-Shannon entropies. We shall argue that, despite its common use, the last is not an appropriate physical entropy for such systems, either isolated or in contact with thermal reservoirs: physical entropies should depend on the microstate of the system, not on a subjective probability distribution. To square this point of view with experimental results of Bechhoefer we shall argue that the Gibbs-Shannon entropy of a nano particle in a thermal fluid should be interpreted as the Boltzmann entropy of a dilute gas of Brownian particles in the fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We are taking for granted here an assumed underlying (approximately) equal a priori probability of different microstates for a specified macrostate.

  2. 2.

    The derivation of Eq. (27), due to Boltzmann, is straightforward. Divide the \(\gamma -\)space into regions \(\varDelta _\alpha \), with \(\alpha =1,\ldots ,M\), and let \(N_\alpha \) be the number of particles in \(\varDelta _\alpha \). Then, one has that \(|\varGamma _f|\sim \prod \frac{|\varDelta _\alpha |^{N_\alpha }}{N_\alpha !}\). Using Stirling’s formula, one obtains Eq. (27), see [4] for details.

References

  1. Klein, M.J.: The development of Boltzmann’s statistical ideas. In: Cohen, E.G.D., Thirring, W. (eds.) The Boltzmann Equation. Theory and Application, pp. 53–106. Springer, Berlin (1973)

    Chapter  Google Scholar 

  2. Penrose, O.: Foundations of Statistical Mechanics: A Deductive Treatment. Courier Corporation, North Chelmsford (2005)

    MATH  Google Scholar 

  3. Lebowitz, J.L.: From time-symmetric microscopic dynamics to time-asymmetric macroscopic behavior: an overview. In: Boltzmann’s Legacy, pp. 63–88 (2007)

    Google Scholar 

  4. Goldstein, S., Lebowitz, J.L.: On the (Boltzmann) entropy of non-equilibrium systems. Physica D 193(1), 53–66 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems, vol. 320. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  6. Giacomin, G., Lebowitz, J.L., Presutti, E.: Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems. Math. Surv. Monogr. 64, 107–152 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lebowitz, J.L., Presutti, E., Spohn, H.: Microscopic models of hydrodynamic behavior. J. Stat. Phys. 51(5), 841–862 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gavrilov, M., Chétrite, R., Bechhoefer, J.: Direct measurement of weakly nonequilibrium system entropy is consistent with Gibbs–Shannon form. Proc. Nat. Acad. Sci. 114(42), 11097–11102 (2017)

    Article  Google Scholar 

  9. Ciliberto, S.: Experiments in stochastic thermodynamics: short history and perspectives. Phys. Rev. X 7(2), 021051 (2017)

    Google Scholar 

  10. Kaufman, A.M., Tai, M.E., Lukin, A., Rispoli, M., Schittko, R., Preiss, P.M., Greiner, M.: Quantum thermalization through entanglement in an isolated many-body system. Science 353(6301), 794–800 (2016)

    Article  Google Scholar 

  11. Brush, S.G.: Science and Culture in the Nineteenth Century: Thermodynamics and History. University of Texas, Texas (1967)

    Google Scholar 

  12. Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics. Wiley, New York (1998)

    MATH  Google Scholar 

  13. De Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. Courier Corporation, North Chelmsford (2013)

    MATH  Google Scholar 

  14. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ehrenfest, P., Ehrenfest, T.: The Conceptual Foundations of the Statistical Approach in Mechanics. Courier Corporation, North Chelmsford (2002)

    MATH  Google Scholar 

  16. Bergmann, P.G., Lebowitz, J.L.: New approach to nonequilibrium processes. Phys. Rev. 99(2), 578 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lebowitz, J.L., Bergmann, P.G.: Irreversible Gibbsian ensembles. Ann. Phys. 1(1), 1–23 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  18. Doob, J.L.: Stochastic Processes. Wiley, New York (1953)

    MATH  Google Scholar 

  19. Derrida, B., Lebowitz, J., Speer, E.: Entropy of open lattice systems. J. Stat. Phys. 126(4–5), 1083–1108 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bonetto, F., Lebowitz, J.L., Lukkarinen, J.: Fourier’s law for a harmonic crystal with self-consistent stochastic reservoirs. J. Stat. Phys. 116(1), 783–813 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kosygina, E.: The behavior of the specific entropy in the hydrodynamic scaling limit. Ann. Probab. 29(3), 1086–1110 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chernov, N., Lebowitz, J.L.: Stationary nonequilibrium states in boundary-driven Hamiltonian systems: shear flow. J. Stat. Phys. 86(5), 953–990 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lebowitz, J.L., Spohn, H.: A Gallavotti–Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95(1), 333–365 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Maxwell, J.C.: Theory of Heat, p. 308: Tait’s Thermodynamics. Nature 17, 257 (1878). Quoted in M. J. Klein “The development of Boltzmann’s statistical ideas”. See ref. [1]

    Google Scholar 

  25. Jarzynski, C.: Stochastic and macroscopic thermodynamics of strongly coupled systems. Phys. Rev. X 7(1), 011008 (2017)

    Google Scholar 

  26. Lebowitz, J.L., Pastur, L.: On the equilibrium state of a small system with random matrix coupling to its environment. J. Phys. A Math. Theor. 48(26), 265201 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dürr, D., Goldstein, S., Lebowitz, J.: A mechanical model of Brownian motion. Commun. Math. Phys. 78(4), 507–530 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Seifert, U.: Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75(12), 126001 (2012)

    Article  Google Scholar 

  29. Baiesi, M., Maes, C., Wynants, B.: Fluctuations and response of nonequilibrium states. Phys. Rev. Lett. 103(1), 010602 (2009)

    Article  MATH  Google Scholar 

  30. Risken, H.: Fokker-Planck equation. In: The Fokker-Planck Equation, pp. 63–95. Springer (1996)

    Google Scholar 

  31. Boltzmann, L.: Vorlesungen über Gastheorie: 2. Teil, Leipzig: Barth, 1896, 1898. This book has been translated into English by Brush, S.G. Lectures on Gas Theory, Cambridge University Press, London (1964)

    Google Scholar 

  32. Vilar, J.M., Rubi, J.M.: Failure of the work-Hamiltonian connection for free-energy calculations. Phys. Rev. Lett. 100(2), 020601 (2008)

    Article  Google Scholar 

  33. Peliti, L.: On the work-Hamiltonian connection in manipulated systems. J. Stat. Mech. Theory Exp. 2008(05), P05002 (2008)

    Article  Google Scholar 

  34. Goldstein, S., Huse, D.A., Lebowitz, J.L., Tumulka, R.: Thermal equilibrium of a macroscopic quantum system in a pure state. Phys. Rev. Lett. 115(10), 100402 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We thank John Bechhoefer, Rafaël Chetrite, Stanislas Leibler, Eugene Speer and Bingkan Xue for fruitful discussions. The work of JLL was supported by an AFOSR grant FA9550-16-1-0037. The work of PS has been partly supported by grants from the Simons Foundation to Stanislas Leibler through The Rockefeller University (Grant 345430) and the Institute for Advanced Study (Grant 345801). DAH, JLL, and PS thank the Institute for Advanced Study for its hospitality during the elaboration of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel L. Lebowitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goldstein, S., Huse, D.A., Lebowitz, J.L., Sartori, P. (2019). On the Nonequilibrium Entropy of Large and Small Systems. In: Giacomin, G., Olla, S., Saada, E., Spohn, H., Stoltz, G. (eds) Stochastic Dynamics Out of Equilibrium. IHPStochDyn 2017. Springer Proceedings in Mathematics & Statistics, vol 282. Springer, Cham. https://doi.org/10.1007/978-3-030-15096-9_22

Download citation

Publish with us

Policies and ethics