Skip to main content

Collisional Relaxation and Dynamical Scaling in Multiparticle Collisions Dynamics

  • Conference paper
  • First Online:
Stochastic Dynamics Out of Equilibrium (IHPStochDyn 2017)

Abstract

We present the Multi-Particle-Collision (MPC) dynamics approach to simulate properties of low-dimensional systems. In particular, we illustrate the method for a simple model: a one-dimensional gas of point particles interacting through stochastic collisions and admitting three conservation laws (density, momentum and energy). Motivated from problems in fusion plasma physics, we consider an energy-dependent collision rate that accounts for the lower collisionality of high-energy particles. We study two problems: (i) the collisional relaxation to equilibrium starting from an off-equilibrium state and (ii) the anomalous dynamical scaling of equilibrium time-dependent correlation functions. For problem (i), we demonstrate the existence of long-lived population of suprathermal particles that propagate ballistically over a quasi-thermalized background. For (ii) we compare simulations with the predictions of nonlinear fluctuating hydrodynamics for the structure factors of density fluctuations. Scaling analysis confirms the prediction that such model belong to the Kardar-Parisi-Zhang universality class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pomeau, Y., Résibois, P.: Phys. Rep. 19(2), 63 (1975)

    Article  Google Scholar 

  2. Malevanets, A., Kapral, R.: EPL (Europhys. Lett.) 44(5), 552 (1998)

    Article  Google Scholar 

  3. Malevanets, A., Kapral, R.: J. Chem. Phys. 110, 8605 (1999). https://doi.org/10.1063/1.478857

    Article  Google Scholar 

  4. Malevanets, A., Kapral, R.: In: Karttunen, M., Lukkarinen, A., Vattulainen, I. (eds.) Novel Methods in Soft Matter Simulations. Lecture Notes in Physics, vol. 640, pp. 116–149. Springer, Heidelberg (2004). https://doi.org/10.1007/b95265

    MATH  Google Scholar 

  5. Dreicer, H.: Phys. Rev. 115, 238 (1959). https://doi.org/10.1103/PhysRev.115.238

    Article  MathSciNet  Google Scholar 

  6. Dreicer, H.: Phys. Rev. 117, 329 (1960). https://doi.org/10.1103/PhysRev.117.329

    Article  MathSciNet  Google Scholar 

  7. Zhou, R.J., Hu, L.Q., Zhang, Y., Zhong, G.Q., Lin, S.Y., The EAST Team: Nucl. Fusion 57(11), 114002 (2017). https://doi.org/10.1088/1741-4326/aa7c9d

    Article  Google Scholar 

  8. Lepri, S., Livi, R., Politi, A.: Phys. Rep. 377, 1 (2003). https://doi.org/10.1016/S0370-1573(02)00558-6

    Article  MathSciNet  Google Scholar 

  9. Dhar, A.: Adv. Phys. 57, 457 (2008)

    Article  Google Scholar 

  10. Lepri, S. (ed.): Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer. Lect. Notes Phys., vol. 921. Springer, Heidelberg (2016)

    Google Scholar 

  11. Basile, G., Delfini, L., Lepri, S., Livi, R., Olla, S., Politi, A.: Eur. Phys. J. Spec. Top. 151, 85 (2007)

    Article  Google Scholar 

  12. van Beijeren, H.: Phys. Rev. Lett. 108(18), 180601 (2012). https://doi.org/10.1103/PhysRevLett.108.180601

    Article  Google Scholar 

  13. Spohn, H.: J. Stat. Phys. 154, 1191 (2014). https://doi.org/10.1007/s10955-014-0933-y

    Article  MathSciNet  Google Scholar 

  14. Spohn, H.: In: Lepri, S. (ed.) Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer. Lecture Notes Physics, vol. 921. Springer, Heidelberg (2016)

    Google Scholar 

  15. Kardar, M., Parisi, G., Zhang, Y.C.: Phys. Rev. Lett. 56, 889 (1986). https://doi.org/10.1103/PhysRevLett.56.889

    Article  Google Scholar 

  16. Spohn, H., Stoltz, G.: J. Stat. Phys. (2015). https://doi.org/10.1007/s10955-015-1214-0

    Article  MathSciNet  Google Scholar 

  17. Popkov, V., Schadschneider, A., Schmidt, J., Schütz, G.M.: Proc. Nat. Acad. Sci. 112(41), 12645 (2015)

    Article  Google Scholar 

  18. Gompper, G., Ihle, T., Kroll, D.M., Winkler, R.G.: Multi-particle collision dynamics: a particle-based mesoscale simulation approach to the hydrodynamics of complex fluids. In: Holm, C., Kremer, K. (eds.) Advanced Computer Simulation Approaches for Soft Matter Sciences III. Advances in Polymer Science, vol 221. Springer, Heidelberg (2009)

    Google Scholar 

  19. Kapral, R.: Multiparticle collision dynamics: simulation of complex systems on mesoscales. In: Advances in Chemical Physics, pp. 89–146 (2008). https://doi.org/10.1002/9780470371572.ch2

    Chapter  Google Scholar 

  20. Ciraolo, G., Bufferand, H., Di Cintio, P., Ghendrih, P., Lepri, S., Livi, R., Marandet, Y., Serre, E., Tamain, P., Valentinuzzi, M.: Fluid and kinetic modelling for non-local heat transport in magnetic fusion devices. Contrib. Plasma Phys. 1–8 (2018). https://doi.org/10.1002/ctpp.201700222

    Article  Google Scholar 

  21. Di Cintio, P., Livi, R., Bufferand, H., Ciraolo, G., Lepri, S., Straka, M.J.: Phys. Rev. E 92, 062108 (2015)

    Article  Google Scholar 

  22. Bufferand, H., Ciraolo, G., Ghendrih, P., Tamain, P., Bagnoli, F., Lepri, S., Livi, R.: J. Phys. Conf. Ser. 260, 012005 (2010)

    Article  Google Scholar 

  23. Bufferand, H., Ciraolo, G., Ghendrih, P., Lepri, S., Livi, R.: Phys. Rev. E 87(2), 023102 (2013). https://doi.org/10.1103/PhysRevE.87.023102

    Article  Google Scholar 

  24. Di Cintio, P., Livi, R., Lepri, S., Ciraolo, G.: Phys. Rev. E 95, 043203 (2017). https://doi.org/10.1103/PhysRevE.95.043203. https://link.aps.org/doi/10.1103/PhysRevE.95.043203

    Article  Google Scholar 

  25. Delfini, L., Lepri, S., Livi, R., Politi, A.: J. Stat. Mech. Theory Exp., P02007 (2007)

    Google Scholar 

  26. Mendl, C., Spohn, H.: (private communication)

    Google Scholar 

  27. Das, S.G., Dhar, A., Saito, K., Mendl, C.B., Spohn, H.: Phys. Rev. E 90(1), 012124 (2014)

    Article  Google Scholar 

  28. Mendl, C.B., Spohn, H.: Phys. Rev. Lett. 111, 230601 (2013)

    Article  Google Scholar 

  29. Chen, S., Zhang, Y., Wang, J., Zhao, H.: Phys. Rev. E 87(3), 032153 (2013). https://doi.org/10.1103/PhysRevE.87.032153

    Article  Google Scholar 

  30. Das, S., Dhar, A., Narayan, O.: J. Stat. Phys. 154(1–2), 204 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training program 2014–2018 under grant agreement No 633053 for the project WP17-ENR- CEA-01 ESKAPE. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Lepri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lepri, S., Bufferand, H., Ciraolo, G., Di Cintio, P., Ghendrih, P., Livi, R. (2019). Collisional Relaxation and Dynamical Scaling in Multiparticle Collisions Dynamics. In: Giacomin, G., Olla, S., Saada, E., Spohn, H., Stoltz, G. (eds) Stochastic Dynamics Out of Equilibrium. IHPStochDyn 2017. Springer Proceedings in Mathematics & Statistics, vol 282. Springer, Cham. https://doi.org/10.1007/978-3-030-15096-9_10

Download citation

Publish with us

Policies and ethics