Large-Scale Semantic Data Management For Urban Computing Applications

  • Shengli SongEmail author
  • Xiang Zhang
  • Bin Guo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11204)


Due to the current lack of effectiveness on perception, management, and coordination for urban computing applications, a great number of semantic data has not yet been fully exploited and utilized, decreasing the effectiveness of urban services. To address the problem, we propose a semantic data management framework, RDFStore, for large-scale urban data management and query. RDFStore uses hashcode as the basic encoding pattern for semantic data storage. Based on the characteristics of strong connectedness of the data clique with different semantics, we construct indexes through the maximum clique on the whole semantic data. The large-scale semantic data of urban computing is organized and managed. On the basis of clique index, we adopt CLARANS clustering to enhance the accessibility of vertexes, and the data management is fulfilled. The experiment compares RDFStore to the mainstream platforms, and the results show that the proposed framework does enhance the effectiveness of semantic data management for urban computing applications.


Urban computing Semantic data management Encoding pattern Data clustering 


  1. 1.
    Zheng, Y., Liu, Y., Yuan, J., et al.: Urban computing with taxicabs. In: Proceedings of the 13th International Conference on Ubiquitous Computing, pp. 89–98. ACM (2011)Google Scholar
  2. 2.
    Jiang, S., Fiore, G.A., Yang, Y., et al.: A review of urban computing for mobile phone traces: current methods, challenges and opportunities. In: Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, p. 2. ACM (2013)Google Scholar
  3. 3.
    Yuan, P., Liu, P., Wu, B., et al.: TripleBit: a fast and compact system for large scale RDF data. Proc. VLDB Endow. 6(7), 517–528 (2013)CrossRefGoogle Scholar
  4. 4.
    Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: a generic architecture for storing and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002). Scholar
  5. 5.
    Wilkinson, K., Wilkinson, K.: Jena property table implementation (2006)Google Scholar
  6. 6.
    Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF data. VLDB J. Int. J. Very Large Data Bases 19(1), 91–113 (2010)Google Scholar
  7. 7.
    Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data management. Proc. VLDB Endow. 1(1), 1008–1019 (2008)CrossRefGoogle Scholar
  8. 8.
    Atre, M., Chaoji, V., Zaki, M.J., et al.: Matrix Bit loaded: a scalable lightweight join query processor for RDF data. In: Proceedings of the 19th International Conference on World Wide Web, pp. 41–50. ACM (2010)Google Scholar
  9. 9.
    Modoni, G.E., Sacco, M., Terkaj, W.: A survey of RDF store solutions. In: 2014 International ICE Conference on Engineering, Technology and Innovation (ICE), pp. 1–7. IEEE (2014)Google Scholar
  10. 10.
    Chambi, S., Lemire, D., Kaser, O., et al.: Better bitmap performance with roaring bitmaps. Softw. Pract. Exp. 46(5), 709–719 (2016)CrossRefGoogle Scholar
  11. 11.
    Yan, Y., Wang, C., Zhou, A., et al.: Efficiently querying RDF data in triple stores. In: Proceedings of the 17th International Conference on World Wide Web, pp. 1053–1054. ACM (2008)Google Scholar
  12. 12.
    Sidirourgos, L., Goncalves, R., Kersten, M., et al.: Column-store support for RDF data management: not all swans are white. Proc. VLDB Endow. 1(2), 1553–1563 (2008)CrossRefGoogle Scholar
  13. 13.
    Bonstrom, V., Hinze, A., Schweppe, H.: Storing RDF as a graph. In: Proceedings of Web Congress. First Latin American, pp. 27–36. IEEE (2003)Google Scholar
  14. 14.
    Kim, J., Shin, H., Han, W.S., et al.: Taming subgraph isomorphism for RDF query processing. Proc. VLDB Endow. 8(11), 1238–1249 (2015)CrossRefGoogle Scholar
  15. 15.
    Peng, P., Zou, L., Özsu, M.T., et al.: Processing SPARQL queries over distributed RDF graphs. VLDB J. 25(2), 243–268 (2016)CrossRefGoogle Scholar
  16. 16.
    Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. Theoret. Comput. Sci. 363(1), 28–42 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zheng, W., Zou, L., Lian, X., et al.: SQBC: an efficient subgraph matching method over large and dense graphs. Inf. Sci. 261, 116–131 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Grosso, A., Locatelli, M., Pullan, W.: Simple ingredients leading to very efficient heuristics for the maximum clique problem. J. Heuristics 14(6), 587–612 (2008)CrossRefGoogle Scholar
  19. 19.
    Unger, C., Forascu, C., Lopez, V., et al.: Question answering over linked data (QALD-4). In: Working Notes for CLEF 2014 Conference (2014)Google Scholar
  20. 20.
    Khan, A., Wu, Y., Aggarwal, C.C., et al.: Nema: fast graph search with label similarity. Proc. VLDB Endow. 6(3), 181–192 (2013)Google Scholar
  21. 21.
    Yang, S., Wu, Y., Sun, H., et al.: Schemaless and structureless graph querying. Proc. VLDB Endow. 7(7), 565–576 (2014)CrossRefGoogle Scholar
  22. 22.
    Zheng, W., Zou, L., Peng, W., et al.: Semantic SPARQL similarity search over RDF knowledge graphs. Proc. VLDB Endow. 9(11), 840–851 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Software Engineering InstituteXidian UniversityXi’anChina
  2. 2.School of Computer Science and TechnologyXidian UniversityXi’anChina
  3. 3.School of Computer ScienceNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations