Advertisement

Monte Carlo GRW Simulations of Passive Transport in Groundwater

  • Nicolae Suciu
Chapter
  • 304 Downloads
Part of the Geosystems Mathematics book series (GSMA)

Abstract

Monte Carlo GRW simulations of passive transport in groundwater are used to investigate ergodic properties, dependence on initial conditions, and the occurrence of anomalous diffusion. It is shown that memory effects produced by dependence on initial conditions are responsible for the lack of ergodicity of the transport, in the sense of approach to the theoretical upscaled process. Evolving scale heterogeneity of groundwater systems, consisting of a superposition of spatial scales, enhances the memory effects and may explain the occurrence of anomalous diffusion behavior.

References

  1. 1.
    Bellin, A., Pannone, M., Fiori, A., Rinaldo, A.: On transport in porous formations characterized by heterogeneity of evolving scales. Water Resour. Res. 32, 3485–3496 (1996)CrossRefGoogle Scholar
  2. 2.
    Bouchaud, J.-P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cintoli, S., Neuman, S.P., Di Federico, V.: Generating and scaling fractional Brownian motion on finite domains. Geophys. Res. Lett. 32, L08404 (2005)CrossRefGoogle Scholar
  4. 4.
    Dagan, G.: Flow and Transport in Porous Formations. Springer, Berlin (1989)CrossRefGoogle Scholar
  5. 5.
    Dagan, G.: Transport in heterogeneous porous formations: spatial moments, ergodicity, and effective dispersion. Water Resour. Res. 26(6), 1281–1290 (1990)CrossRefGoogle Scholar
  6. 6.
    Dagan, G.: The significance of heterogeneity of evolving scales and of anomalous diffusion to transport in porous formations. Water Resour. Res. 30, 3327–3336 (1994)CrossRefGoogle Scholar
  7. 7.
    Di Federico, V., Neuman, S.P.: Scaling of random fields by means of truncated power variograms and associated spectra. Water Resour. Res. 33, 1075–1085 (1997)CrossRefGoogle Scholar
  8. 8.
    Eberhard, J., Suciu, N., Vamos, C.: On the self-averaging of dispersion for transport in quasi-periodic random media. J. Phys. A: Math. Theor. 40, 597–610 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fiori, A.: On the influence of local dispersion in solute transport through formations with evolving scales of heterogeneity. Water Resour. Res. 37(2), 235–242 (2001)CrossRefGoogle Scholar
  10. 10.
    Gelhar, L.W.: Stochastic subsurface hydrology from theory to applications. Water Resour. Res. 22(9S), 135S–145S (1986)CrossRefGoogle Scholar
  11. 11.
    Gelhar, L.W., Axness, C.: Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour. Res. 19(1), 161–180 (1983)CrossRefGoogle Scholar
  12. 12.
    Jeon, J.-H., Metzler, R.: Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. Phys. Rev. E 81, 021103 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kraichnan, R.H.: Diffusion by a random velocity field. Phys. Fluids 13(1), 22–31 (1970)CrossRefGoogle Scholar
  14. 14.
    Liu, H.H., Molz, F.J.: Block scale dispersivity for heterogeneous porous media characterized by stochastic fractals. Geophys. Res. Lett. 24(17), 2239–2242 (1997)CrossRefGoogle Scholar
  15. 15.
    McLaughlin, D., Ruan, F.: Macrodispersivity and large-scale hydrogeologic variability. Transp. Porous Media 42, 133–154 (2001)CrossRefGoogle Scholar
  16. 16.
    Sposito, G., Jury, W.A., Gupta, V.K.: Fundamental problems in the stochastic convection-dispersion model of solute transport in aquifers and field soils. Water Resour. Res. 22(1), 77–88 (1986)CrossRefGoogle Scholar
  17. 17.
    Suciu, N.: Spatially inhomogeneous transition probabilities as memory effects for diffusion in statistically homogeneous random velocity fields. Phys. Rev. E 81, 056301 (2010)CrossRefGoogle Scholar
  18. 18.
    Suciu, N., Knabner, P.: Comment on ‘Spatial moments analysis of kinetically sorbing solutes in aquifer with bimodal permeability distribution’ by M. Massabo, A. Bellin, and A. J. Valocchi. Water Resour. Res. 45, W05601 (2009)Google Scholar
  19. 19.
    Suciu, N., Vamoş, C.: Comment on “Nonstationary flow and nonergodic transport in random porous media” by G. Darvini and P. Salandin. Water Resour. Res. 43, W12601 (2007)Google Scholar
  20. 20.
    Suciu, N., Vamoş, C.: Ergodic estimations of upscaled coefficients for diffusion in random velocity fields. In: L’Ecuyér, P., Owen, A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2008, pp. 617–626. Springer, Berlin (2009)CrossRefGoogle Scholar
  21. 21.
    Suciu, N., Vamoş, C., Vanderborght, J., Hardelauf, H., Vereecken, H.: Numerical investigations on ergodicity of solute transport in heterogeneous aquifers. Water Resour. Res. 42, W04409 (2006)zbMATHGoogle Scholar
  22. 22.
    Suciu, N., Vamoş, C., Eberhard, J.: Evaluation of the first-order approximations for transport in heterogeneous media. Water Resour. Res. 42, W11504 (2006)Google Scholar
  23. 23.
    Suciu, N., Vamos, C., Vereecken, H., Sabelfeld, K., Knabner, P.: Ito equation model for dispersion of solutes in heterogeneous media. Rev. Anal. Numer. Theor. Approx. 37, 221–238 (2008)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Suciu, N., Vamoş, C., Vereecken, H., Sabelfeld, K., Knabner, P.: Memory effects induced by dependence on initial conditions and ergodicity of transport in heterogeneous media. Water Resour. Res. 44, W08501 (2008)CrossRefGoogle Scholar
  25. 25.
    Suciu, N., Vamos, C., Radu, F.A., Vereecken, H., Knabner, P.: Persistent memory of diffusing particles. Phys. Rev. E 80, 061134 (2009)CrossRefGoogle Scholar
  26. 26.
    Suciu, N., Attinger, S., Radu, F.A., Vamoş, C., Vanderborght, J., Vereecken, H., Knabner, P.: Solute transport in aquifers with evolving scale heterogeneity. Preprint No. 346, Mathematics Department—Friedrich-Alexander University Erlangen-Nuremberg (2011)Google Scholar
  27. 27.
    Suciu, N., Attinger, S., Radu, F.A., Vamoş, C., Vanderborght, J., Vereecken, H. Knabner, P.: Solute transport in aquifers with evolving scale heterogeneity. An. Sti. U. Ovid. Co-Mat. 23(3), 167–186 (2015)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Vamoş, C., Suciu, N., Vereecken, H., Vanderborght, J., Nitzsche, O.: Path decomposition of discrete effective diffusion coefficient. Internal Report ICG-IV 00501, Research Center Jülich (2001)Google Scholar
  29. 29.
    Yaglom, A.M.: Correlation Theory of Stationary and Related Random Functions, Volume I: Basic Results. Springer, New York (1987)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicolae Suciu
    • 1
    • 2
  1. 1.Department of MathematicsFriedrich-Alexander University of Erlangen-NürnbergErlangenGermany
  2. 2.Tiberiu Popoviciu Institute of Numerical AnalysisCluj-Napoca Branch of the Romanian AcademyCluj-NapocaRomania

Personalised recommendations