• Nicolae Suciu
Part of the Geosystems Mathematics book series (GSMA)


In this chapter, basic concepts used in stochastic modeling of transport processes are revisited. Random fields and stochastic processes will be introduced as particular random functions. The hierarchy of finite dimensional distributions will be introduced and particularized for Markov and diffusion processes. Itô and Fokker–Planck descriptions of the diffusion process will be used to introduce the stochastic-Lagrangian framework.


  1. 1.
    Avellaneda, M., Torquato, S., Kim, I.C.: Diffusion and geometric effects in passive advection by random arrays of vortices. Phys. Fluids A 3(8), 1880–1891 (1991)CrossRefGoogle Scholar
  2. 2.
    Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Oxford University Press, Oxford (1959)zbMATHGoogle Scholar
  3. 3.
    Cornfeld, I., Fomin, S., Sinai, Ya.G.: Ergodic Theory. Springer, New York (1982)Google Scholar
  4. 4.
    Crank, J.: The Mathematics of Diffusion. Oxford University Press, Oxford (1975)zbMATHGoogle Scholar
  5. 5.
    Dagan, G.: Flow and Transport in Porous Formation. Springer, Berlin (1989)CrossRefGoogle Scholar
  6. 6.
    Doob, J.L.: Stochastic Processes. Wiley, New York (1990)zbMATHGoogle Scholar
  7. 7.
    Evans, D.J., Morriss G.P.: Statistical Mechanics of Nonequilibrium Liquids. Academic, London (1990)zbMATHGoogle Scholar
  8. 8.
    Gardiner, C.W.: Stochastic Methods. Springer, Berlin (2009)zbMATHGoogle Scholar
  9. 9.
    Georgescu, A.: Asymptotic Treatment of Differential Equations. Applied Mathematics and Mathematical Computation, vol. 9. Chapman & Hall, London (1995)Google Scholar
  10. 10.
    Iosifescu, M., Tăutu, P.: Stochastic Processes and Applications in Biology and Medicine. Editura Academiei Bucureşti and Springer, Bucharest (1973)CrossRefGoogle Scholar
  11. 11.
    Kloeden, P.E., Platen, E.: Relations between multiple Ito and Stratonovich integrals. Stoch. Anal. Appl. 9(3), 86–96 (1991)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kloeden, P.E., Platen, E.: Numerical Solutions of Stochastic Differential Equations. Springer, Berlin (1999)zbMATHGoogle Scholar
  13. 13.
    Kolmogorov, A., Fomine, S.: Élémentes de la théorie des fonctions et de l’analyse fonctionelle. Mir, Moscou (1975)Google Scholar
  14. 14.
    Lasota, A., Mackey, M.C.: Probabilistic Properties of Deterministic Systems. Springer, New York (1985)CrossRefGoogle Scholar
  15. 15.
    Lasota, A., Mackey, M.C.: Chaos, Fractals, and Noise, Stochastic Aspects of Dynamics. Springer, New York (1994)CrossRefGoogle Scholar
  16. 16.
    Lundgren, T.S., Pointin, Y.B.: Turbulent self-diffusion. Phys. Fluids 19(3), 355–358 (1976)CrossRefGoogle Scholar
  17. 17.
    Mackey, M.C.: The dynamic origin of increasing entropy. Rev. Mod. Phys. 61(4), 981–1016 (1989)CrossRefGoogle Scholar
  18. 18.
    Malliavin, P.: Integration and Probability. Springer, New York (1995)CrossRefGoogle Scholar
  19. 19.
    Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence. MIT Press, Cambridge (1975)Google Scholar
  20. 20.
    Paley, R.E.A.C., Wiener, N., Zygmund, A.: Notes on random functions. Math. Z. 37(1), 647–668 (1933)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Papoulis, A., Pillai, S.U.: Probability, Random Variables and Stochastic Processes. McGraw-Hill, Singapore (2002)Google Scholar
  22. 22.
    Suciu, N.: Mathematical background for diffusion processes in natural porous media. Forschungszentrum Jülich/ICG-4. Internal Report No. 501800 (2000)Google Scholar
  23. 23.
    Suciu, N.: On the connection between the microscopic and macroscopic modeling of the thermodynamic processes (in Romanian). Ed. Univ. Piteşti (2001)Google Scholar
  24. 24.
    Suciu, N., Georgescu, A.: On the Misra-Prigogine-Courbage theory of irreversibility. Mathematica 44(67), 215–231 (2002)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Taylor, G.I.: Diffusion by continuous movements. Proc. Lond. Math. Soc. 2(20), 196–212 (1921)MathSciNetzbMATHGoogle Scholar
  26. 26.
    van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1981)zbMATHGoogle Scholar
  27. 27.
    Wentzell, A.D.: A Course in the Theory of Stochastic Processes. McGraw-Hill, New York (1981)zbMATHGoogle Scholar
  28. 28.
    Yaglom, A.M.: Correlation Theory of Stationary and Related Random Functions, Volume I: Basic Results. Springer, New York (1987)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicolae Suciu
    • 1
    • 2
  1. 1.Department of MathematicsFriedrich-Alexander University of Erlangen-NürnbergErlangenGermany
  2. 2.Tiberiu Popoviciu Institute of Numerical AnalysisCluj-Napoca Branch of the Romanian AcademyCluj-NapocaRomania

Personalised recommendations