Minimizing Daily Cost and Maximizing User Comfort Using a New Metaheuristic Technique

  • Raza Abid Abbasi
  • Nadeem JavaidEmail author
  • Sajjad Khan
  • Shujat ur Rehman
  • Amanullah
  • Rana Muhammad Asif
  • Waleed Ahmad
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 927)


A home energy management system intended to improve the energy consumption pattern in a smart home is proposed in this research. The objective of this work is to handle the load need in an adequate manner such that, electrical energy cost and waiting time is minimized where Peak to Average Ratio (PAR) is maintained through coordination among appliances. The proposed scheme performance is assessed for PAR, user comfort and cost. This work assess the behavior of advised plan for real-time pricing and critical peak pricing schemes.


Smart Grid DSM HEMS BCS 


  1. 1.
    U.S. Energy Information Administration, Annual Energy Outlook 2018, p. 121, 122, Residential and commercial energy consumption grows gradually from 2017 to 2050. Accessed October 2018
  2. 2.
    Luo, F., Ranzi, G., Wan, C., Xu, Z., Dong, Z.Y.: A multi-stage home energy management system with residential photovoltaic penetration. IEEE Trans. Ind. Inf., 11 (2018)Google Scholar
  3. 3.
    Strbac, G.: Demand side management: benefits and challenges. Energy Policy 36, 4419–4426 (2008). Energies 11, 1426 (2018)CrossRefGoogle Scholar
  4. 4.
    Gellings, C.W.: The concept of demand-side management for electric utilities. Proc. IEEE 73(10), 1468–1470 (1985)CrossRefGoogle Scholar
  5. 5.
    Baharlouei, Z., Hashemi, M.: Demand side management challenges in smart grid: a review. In: Proceedings Smart Grid Conference (SGC), pp. 96–101, December 2013Google Scholar
  6. 6.
    Huang, Y., Wang, L., Guo, W., Kang, Q., Wu, Q.: Chance constrained optimization in a home energy management system. IEEE Trans. Smart Grid 9(1), 252–260 (2018)CrossRefGoogle Scholar
  7. 7.
    Hansen, T.M., Chong, E.K.P., Suryanarayanan, S., Maciejewski, A.A., Siegel, H.J.: A partially observable markov decision process approach to residential home energy management. IEEE Trans. Smart Grid 9(2), 1271–1281 (2018)CrossRefGoogle Scholar
  8. 8.
    Luo, F., Ranzi, G., Kong, W., Dong, Z.Y., Wang, F.: Coordinated residential energy resource scheduling with vehicle-to-home and high photovoltaic penetrations. IET Renew. Power Gener. 12(6), 625–632 (2018)CrossRefGoogle Scholar
  9. 9.
    Luo, F., Dong, Z.Y., Xu, Z., Kong, W., Wang, F.: Distributed residential energy resource scheduling with renewable uncertainties. IET Gener. Transm. Distrib. 12(11), 2770–2777 (2018)CrossRefGoogle Scholar
  10. 10.
    Elghitani, F., Zhuang, W.: Aggregating a large number of residential appliances for demand response applications. IEEE Trans. Smart Grid 9(5), 5092–5100 (2018)CrossRefGoogle Scholar
  11. 11.
    Tushar, M.H.K., Zeineddine, A.W., Assi, C.: Demand-side management by regulating charging and discharging of the EV, ESS, and utilizing renewable energy. IEEE Trans. Ind. Inf. 14(1), 117–126 (2018)CrossRefGoogle Scholar
  12. 12.
    Wu, X., Hu, X., Yin, X., Moura, S.J.: Stochastic optimal energy management of smart home with PEV energy storage. IEEE Trans. Smart Grid 9(3), 2065–2075 (2018)CrossRefGoogle Scholar
  13. 13.
    Moon, J., Kim, K.-H., Kim, Y., Hwang, E.: A short-term electric load forecasting scheme using 2-stage predictive analytics. In: 2018 IEEE International Conference on Big Data and Smart Computing (2018)Google Scholar
  14. 14.
    Keles, D., Scelle, J., Paraschiv, F.: Wolf Fichtner Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks. Appl. Energy 162, 218–230 (2016)CrossRefGoogle Scholar
  15. 15.
    Ghofrani, M., Hassanzadeh, M., Etezadi-Amoli, M., Fadali, M.: Smart meter based short-term load forecasting for residential customers. In: North American Power Symposium (NAPS), pp. 1–5, August 2011Google Scholar
  16. 16.
    Huang, H., Cai, Y., Xu, H., Yu, H.: A multi-agent minority-game- based demand-response management of smart buildings towards peak load reduction. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 36(4), 573–585 (2017)CrossRefGoogle Scholar
  17. 17.
    Ruelens, F., Claessens, B.J., Vandael, S., Schutter, B.D., Babuška, R., Belmans, R.: Residential demand response of thermostatically controlled loads using batch reinforcement learning. IEEE Trans. Smart Grid 8(5), 2149–2159 (2017)CrossRefGoogle Scholar
  18. 18.
    Pourmousavi, S.A., Patrick, S.N., Nehrir, M.H.: Real-time demand response through aggregate electric water heaters for load shifting and balancing wind generation. IEEE Trans. Smart Grid 5(2), 769–778 (2014)CrossRefGoogle Scholar
  19. 19.
    Jindal, A., Dua, A., Kaur, K., Singh, M., Kumar, N., Mishra, S.: Decision tree and SVM-based data analytics for theft detection in smart grid. IEEE Trans. Ind. Informat. 12(3), 1005–1016 (2016)CrossRefGoogle Scholar
  20. 20.
    Mirowski, P., Chen, S., Ho, T.K., Yu, C.-N.: Demand forecasting in smart grids. Bell Labs Tech. J. 18(4), 135–158 (2014)CrossRefGoogle Scholar
  21. 21.
    Wijaya, T.K., Vasirani, M., Humeau, S., Aberer, K.: Cluster-based aggregate forecasting for residential electricity demand using smart meter data. In: IEEE International Conference on Big Data (Big Data)Google Scholar
  22. 22.
    Yang, J., Liu, J., Fang, Z., Liu, W.: Electricity scheduling strategy for home energy management system with renewable energy and battery storage: a case study. IET Renew. Power Gener. 12(6), 639–648 (2018)CrossRefGoogle Scholar
  23. 23.
    Merrikh-Bayat, F.: A numerical optimization algorithm inspired by the strawberry plant, arXiv preprint arXiv:1407.7399 (2014)
  24. 24.
    Waterloo North Hydro Inc. Residential Charges and Rates. Accessed 20 May 2016.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Raza Abid Abbasi
    • 1
  • Nadeem Javaid
    • 1
    Email author
  • Sajjad Khan
    • 1
  • Shujat ur Rehman
    • 2
  • Amanullah
    • 2
  • Rana Muhammad Asif
    • 3
  • Waleed Ahmad
    • 1
  1. 1.COMSATS Institute of Information TechnologyIslamabadPakistan
  2. 2.Quaid-i-Azam UniversityIslamabadPakistan
  3. 3.NCBA&EMultanPakistan

Personalised recommendations