Skip to main content

Cost Benefits of Multi-cloud Deployment of Dynamic Computational Intelligence Applications

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 927)

Abstract

Cost savings is one of the main motivations for deploying commercial applications in the Cloud. These savings are more pronounced for applications with varying computational needs, like Computational Intelligence (CI) applications. However, continuously deploying, adapting, and decommissioning the provided Cloud resources manually is challenging, and autonomous deployment support is necessary. This paper discusses the specific challenges of CI applications and provide calculations to show that dynamic use of Cloud resources will result in significant cost benefits for CI applications.

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 731664 MELODIC: Multi-cloud Execution-ware for Large-scale Optimised Data-Intensive Computing, and from the European Union’s EUREKA Eurostars research and innovation programme under agreement No E! 11990 FUNCTIONIZER: Seamless support of serverless applications in multi-cloud.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-15035-8_102
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-15035-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    http://www.melodic.cloud/.

  2. 2.

    http://www.aiinvestments.pl/.

  3. 3.

    https://kafka.apache.org/.

  4. 4.

    www.optimali.io.

  5. 5.

    https://aws.amazon.com/ec2/pricing/on-demand/.

  6. 6.

    https://azure.microsoft.com/pl-pl/pricing/.

  7. 7.

    https://cloud.google.com/compute/pricing.

  8. 8.

    https://www.melodic.cloud/functionizer.html/.

References

  1. Agrawal, A., Gans, J., Goldfarb, A.: Prediction Machines: The Simple Economics of Artificial Intelligence. Harvard Business Review Press, Brighton (2018)

    Google Scholar 

  2. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011). https://doi.org/10.1016/j.swevo.2011.03.001

    CrossRef  Google Scholar 

  3. Mesbah, A.: Stochastic model predictive control: an overview and perspectives for future research. IEEE Control Syst. 36(6), 30–44 (2016). https://doi.org/10.1109/MCS.2016.2602087

    CrossRef  MathSciNet  Google Scholar 

  4. Bede, B.: Mathematics of Fuzzy Sets and Fuzzy Logic. Studies in Fuzziness and Soft Computing, vol. 295. Springer, Berlin (2013)

    MATH  Google Scholar 

  5. Chui, C.K.: Wavelets: A Tutorial in Theory and Applications. First and Second Volume of Wavelet Analysis and Its Applications (1992)

    Google Scholar 

  6. Cochran, W.T., Cooley, J.W., Favin, D.L., Helms, H.D., Kaenel, R.A., Lang, W.W., Maling, G.C., Nelson, D.E., Rader, C.M., Welch, P.D.: What is the fast fourier transform? Proc. IEEE 55(10), 1664–1674 (1967). https://doi.org/10.1109/PROC.1967.5957

    CrossRef  Google Scholar 

  7. Fogel, D.B.: What is evolutionary computation? IEEE Spectr. 37(2), 26–32 (2000). https://doi.org/10.1109/6.819926

    CrossRef  Google Scholar 

  8. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Optimization and Neural Computation Series. Athena Scientific, Belmont (1996)

    MATH  Google Scholar 

  9. Dreibholz, T., Mazumdar, S., Zahid, F., Taherkordi, A., Gran, E.G.: Mobile edge as part of the multi-cloud ecosystem: a performance study. In: Proceedings of the 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), Pavia, Lombardia/Italy (2019)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)

    Google Scholar 

  11. Horn, G., Skrzypek, P.: MELODIC: utility based cross cloud deployment optimisation. In: 32nd International Conference on Advanced Information Networking and Applications (AINA) Workshops, Poland, pp. 360–367. IEEE Computer Society, Krakow (2018). https://doi.org/10.1109/WAINA.2018.00112

  12. Hsieh, T.J., Hsiao, H.F., Yeh, W.C.: Forecasting stock markets using wavelet transforms and recurrent neural networks: an integrated system based on artificial bee colony algorithm. Appl. Soft Comput. 11(2), 2510–2525 (2011). https://doi.org/10.1016/j.asoc.2010.09.007. The Impact of Soft Computing for the Progress of Artificial Intelligence

    CrossRef  Google Scholar 

  13. Witten, I.H., et al.: Data Mining: Practical Machine Learning Tools and Techniques (2016)

    Google Scholar 

  14. Kacprzyk, J., Pedrycz, W. (eds.): Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin (2015)

    MATH  Google Scholar 

  15. Lee, J.M., Lee, J.H.: Approximate dynamic programming strategies and their applicability for process control: a review and future directions. Int. J. Control Autom. Syst. 2(3), 263–278 (2004)

    Google Scholar 

  16. Zhang, J., Zhan, Z.H., Lin, Y., Chen, N., Gong, Y.J., Zhong, J.H., Chung, H.S.H., Li, Y., Shi, Y.H.: Evolutionary computation meets machine learning: a survey. IEEE Comput. Intell. Mag. 6(4), 68–75 (2011). https://doi.org/10.1109/MCI.2011.942584

    CrossRef  Google Scholar 

  17. Kim, J., El-Khamy, M., Lee, J.: Residual LSTM: design of a deep recurrent architecture for distant speech recognition. CoRR abs/1701.03360 (2017)

    Google Scholar 

  18. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 255–258. MIT Press, Cambridge (1995)

    Google Scholar 

  19. Chen, X.-W., Lin, X.: Big data deep learning: challenges and perspectives. IEEE Access 2, 514–525 (2014)

    CrossRef  Google Scholar 

  20. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016) (2016)

    Google Scholar 

  21. Sutton, R.S., Barto, A.G.: Reinforcement Learning, vol. 9. MIT Press, Boston (1998)

    Google Scholar 

  22. Eberhart, R., Shi, Y., Kennedy, J.: Swarm Intelligence. The Morgan Kaufmann Series in Artificial Intelligence, 1st edn. Morgan Kaufmann, Burlington (2001)

    Google Scholar 

  23. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.P., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016)

    CrossRef  Google Scholar 

  24. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L.R., Lai, M., Bolton, A., Chen, Y., Lillicrap, T.P., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., Hassabis, D.: Mastering the game of go without human knowledge. Nature 550, 354–359 (2017)

    CrossRef  Google Scholar 

  25. Walczak, S.: Artificial neural networks. In: Mehdi Khosrow-Pour, D.B.A. (ed.) Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction, vol. 1, pp. 40–53 (2019). Chapter 4

    Google Scholar 

  26. Umpleby, S.A., Dent, E.B.: The origins and purposes of several traditions in systems theory and cybernetics. Cybern. Syst. 30(2), 79–103 (1999). https://doi.org/10.1080/019697299125299

    CrossRef  MATH  Google Scholar 

  27. Sun, S.: A survey of multi-view machine learning. Neural Comput. Appl. 23(7), 2031–2038 (2013). https://doi.org/10.1007/s00521-013-1362-6

    CrossRef  Google Scholar 

  28. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. CoRR abs/1409.4842 (2014)

    Google Scholar 

  29. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. CoRR abs/1706.03762 (2017)

    Google Scholar 

  30. Pedrycz, W., Ekel, P., Parreiras, R.: Fuzzy Multicriteria Decision-Making: Models, Methods and Applications. Wiley, Hoboken (2010)

    CrossRef  Google Scholar 

  31. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982). https://doi.org/10.1007/BF01001956

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geir Horn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Horn, G., Skrzypek, P., Materka, K., Przeździȩk, T. (2019). Cost Benefits of Multi-cloud Deployment of Dynamic Computational Intelligence Applications. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds) Web, Artificial Intelligence and Network Applications. WAINA 2019. Advances in Intelligent Systems and Computing, vol 927. Springer, Cham. https://doi.org/10.1007/978-3-030-15035-8_102

Download citation