Abstract
Cost savings is one of the main motivations for deploying commercial applications in the Cloud. These savings are more pronounced for applications with varying computational needs, like Computational Intelligence (CI) applications. However, continuously deploying, adapting, and decommissioning the provided Cloud resources manually is challenging, and autonomous deployment support is necessary. This paper discusses the specific challenges of CI applications and provide calculations to show that dynamic use of Cloud resources will result in significant cost benefits for CI applications.
This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 731664 MELODIC: Multi-cloud Execution-ware for Large-scale Optimised Data-Intensive Computing, and from the European Union’s EUREKA Eurostars research and innovation programme under agreement No E! 11990 FUNCTIONIZER: Seamless support of serverless applications in multi-cloud.
This is a preview of subscription content, access via your institution.
Buying options



References
Agrawal, A., Gans, J., Goldfarb, A.: Prediction Machines: The Simple Economics of Artificial Intelligence. Harvard Business Review Press, Brighton (2018)
Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011). https://doi.org/10.1016/j.swevo.2011.03.001
Mesbah, A.: Stochastic model predictive control: an overview and perspectives for future research. IEEE Control Syst. 36(6), 30–44 (2016). https://doi.org/10.1109/MCS.2016.2602087
Bede, B.: Mathematics of Fuzzy Sets and Fuzzy Logic. Studies in Fuzziness and Soft Computing, vol. 295. Springer, Berlin (2013)
Chui, C.K.: Wavelets: A Tutorial in Theory and Applications. First and Second Volume of Wavelet Analysis and Its Applications (1992)
Cochran, W.T., Cooley, J.W., Favin, D.L., Helms, H.D., Kaenel, R.A., Lang, W.W., Maling, G.C., Nelson, D.E., Rader, C.M., Welch, P.D.: What is the fast fourier transform? Proc. IEEE 55(10), 1664–1674 (1967). https://doi.org/10.1109/PROC.1967.5957
Fogel, D.B.: What is evolutionary computation? IEEE Spectr. 37(2), 26–32 (2000). https://doi.org/10.1109/6.819926
Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Optimization and Neural Computation Series. Athena Scientific, Belmont (1996)
Dreibholz, T., Mazumdar, S., Zahid, F., Taherkordi, A., Gran, E.G.: Mobile edge as part of the multi-cloud ecosystem: a performance study. In: Proceedings of the 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), Pavia, Lombardia/Italy (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)
Horn, G., Skrzypek, P.: MELODIC: utility based cross cloud deployment optimisation. In: 32nd International Conference on Advanced Information Networking and Applications (AINA) Workshops, Poland, pp. 360–367. IEEE Computer Society, Krakow (2018). https://doi.org/10.1109/WAINA.2018.00112
Hsieh, T.J., Hsiao, H.F., Yeh, W.C.: Forecasting stock markets using wavelet transforms and recurrent neural networks: an integrated system based on artificial bee colony algorithm. Appl. Soft Comput. 11(2), 2510–2525 (2011). https://doi.org/10.1016/j.asoc.2010.09.007. The Impact of Soft Computing for the Progress of Artificial Intelligence
Witten, I.H., et al.: Data Mining: Practical Machine Learning Tools and Techniques (2016)
Kacprzyk, J., Pedrycz, W. (eds.): Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin (2015)
Lee, J.M., Lee, J.H.: Approximate dynamic programming strategies and their applicability for process control: a review and future directions. Int. J. Control Autom. Syst. 2(3), 263–278 (2004)
Zhang, J., Zhan, Z.H., Lin, Y., Chen, N., Gong, Y.J., Zhong, J.H., Chung, H.S.H., Li, Y., Shi, Y.H.: Evolutionary computation meets machine learning: a survey. IEEE Comput. Intell. Mag. 6(4), 68–75 (2011). https://doi.org/10.1109/MCI.2011.942584
Kim, J., El-Khamy, M., Lee, J.: Residual LSTM: design of a deep recurrent architecture for distant speech recognition. CoRR abs/1701.03360 (2017)
LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 255–258. MIT Press, Cambridge (1995)
Chen, X.-W., Lin, X.: Big data deep learning: challenges and perspectives. IEEE Access 2, 514–525 (2014)
Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016) (2016)
Sutton, R.S., Barto, A.G.: Reinforcement Learning, vol. 9. MIT Press, Boston (1998)
Eberhart, R., Shi, Y., Kennedy, J.: Swarm Intelligence. The Morgan Kaufmann Series in Artificial Intelligence, 1st edn. Morgan Kaufmann, Burlington (2001)
Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.P., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016)
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L.R., Lai, M., Bolton, A., Chen, Y., Lillicrap, T.P., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., Hassabis, D.: Mastering the game of go without human knowledge. Nature 550, 354–359 (2017)
Walczak, S.: Artificial neural networks. In: Mehdi Khosrow-Pour, D.B.A. (ed.) Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction, vol. 1, pp. 40–53 (2019). Chapter 4
Umpleby, S.A., Dent, E.B.: The origins and purposes of several traditions in systems theory and cybernetics. Cybern. Syst. 30(2), 79–103 (1999). https://doi.org/10.1080/019697299125299
Sun, S.: A survey of multi-view machine learning. Neural Comput. Appl. 23(7), 2031–2038 (2013). https://doi.org/10.1007/s00521-013-1362-6
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. CoRR abs/1409.4842 (2014)
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. CoRR abs/1706.03762 (2017)
Pedrycz, W., Ekel, P., Parreiras, R.: Fuzzy Multicriteria Decision-Making: Models, Methods and Applications. Wiley, Hoboken (2010)
Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982). https://doi.org/10.1007/BF01001956
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Horn, G., Skrzypek, P., Materka, K., Przeździȩk, T. (2019). Cost Benefits of Multi-cloud Deployment of Dynamic Computational Intelligence Applications. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds) Web, Artificial Intelligence and Network Applications. WAINA 2019. Advances in Intelligent Systems and Computing, vol 927. Springer, Cham. https://doi.org/10.1007/978-3-030-15035-8_102
Download citation
DOI: https://doi.org/10.1007/978-3-030-15035-8_102
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-15034-1
Online ISBN: 978-3-030-15035-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)