Discrete Element Modeling of Free-Standing Wire Reinforced Jammed Granular Columns

  • Pavel S. Iliev
  • Falk K. Wittel
  • Hans J. HerrmannEmail author
Conference paper
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)


The use of fiber reinforcement in granular media is known to increase the cohesion and therefore the strength of the material. However, a new approach, based on layer-wise deployment of predetermined patterns of the fiber reinforcement has led self-confining and free-standing jammed structures to become viable. We have developed a model to simulate fiber reinforced granular materials, which takes into account irregular particles and wire elasticity and apply it to study the stability of unconfined jammed granular columns.



We acknowledge financial support from the ETH Research Grant ETHIIRA Grant No. ETH-04 14-2 as well as from the ERC Advanced grant number FP7-319968 FlowCCS of the European Research Council. We also want to acknowledge the group of Gramazio/Kohler for the support and for the fruitful discussions.


  1. 1.
    Aejmelaeus-Lindström, P., Willmann, J., Tibbits, S., Gramazio, F., Kohler, M.: Jammed architectural structures: towards large-scale reversible construction. Granular Matter 18, 28 (2016)CrossRefGoogle Scholar
  2. 2.
    Keller, S., Jaeger, H.: Aleatory architectures. Granular Matter 18, 29 (2016)CrossRefGoogle Scholar
  3. 3.
    Laniel, R., Alart, P., Pagano, S.: Discrete element investigations of wire-reinforced geomaterial in a three-dimensional modeling. Comput. Mech. 42, 67–76 (2008)CrossRefGoogle Scholar
  4. 4.
    Villard, V., Chareyre, B.: Design methods for geosynthetic anchor trenches on the basis of true scale experiments and discrete element modelling. Can. Geotech. J. 41, 1193–1205 (2004)CrossRefGoogle Scholar
  5. 5.
    Fauconneau, M., Wittel, F.K., Herrmann, H.J.: Continuous wire reinforcement for jammed granular architecture. Granular Matter 18, 27 (2016)CrossRefGoogle Scholar
  6. 6.
    Michalowski, R.L., Zhao, A.: Failure of fiber-reinforced granular soils. J. Geotech. Eng. 122, 226–234 (1996)CrossRefGoogle Scholar
  7. 7.
    Gray, D.H., Ohashi, H.: Mechanics of fiber reinforcement in sand. J. Geotech. Eng. 109, 335–353 (1983)CrossRefGoogle Scholar
  8. 8.
    Iliev, P.S., Wittel, F.K., Herrmann, H.J.: Discrete element modeling of free-standing wire reinforced jammed granular columns. J. Comput. Part. Mech. 5, 507–516 (2018). Scholar
  9. 9.
    Ferellec, J.R., McDowell, G.R.: Modelling of ballastgeogrid interaction using the discrete-element method. Geosynth. Int. 19, 470–479 (2012)CrossRefGoogle Scholar
  10. 10.
    Bertrand, D., Nicot, F., Gotteland, P., Lambert, S.: Discrete element method (DEM) numerical modeling of double-twisted hexagonal mesh. Can. Geotech. J. 46, 1104–1117 (2008)CrossRefGoogle Scholar
  11. 11.
    Alonso-Marroquin, F., Herrmann, H.J.: Calculation of the incremental stressstrain relation of a polygonal packing. Phys. Rev. E. 66, 021301 (2002)CrossRefGoogle Scholar
  12. 12.
    Moreau, J.J.: New computation methods in granular dynamics. In: Thornton, C. (ed.) Powders and Grains, pp. 227–232. Balkema, Rotterdam (1993)Google Scholar
  13. 13.
    Herrmann, H.J., Luding, S.: Modeling granular media on the computer. Contin. Mech. Thermodyn. 10, 189–231 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979)CrossRefGoogle Scholar
  15. 15.
    Vetter, R., Wittel, F.K., Herrmann, H.J.: Packing model for elastic wires in ellipsoidal cavities. Eur. J. Mech. A. 37, 160–171 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pavel S. Iliev
    • 1
  • Falk K. Wittel
    • 1
  • Hans J. Herrmann
    • 1
    Email author
  1. 1.Institute for Building MaterialsETH ZurichZurichSwitzerland

Personalised recommendations