Skip to main content

MUAVET – An Experimental Test-Bed for Autonomous Multi-rotor Applications

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11472))

  • 1555 Accesses

Abstract

Multi-rotor flying vehicles (referred as UAVs here) are well suited for many applications, including patrolling, inspection, reconnaissance or mapping and they are already used in many cases. In most cases they are used in manual mode, mainly due to legal issues, but autonomous methods and algorithms for UAV navigation are under extensive development nowadays.

This article describes a test-bed system for development of the fully autonomous multi-UAV systems called MUAVET (Multi-UAV Experimental Test-bed). The system incorporates several UAVs, communicating with the base station, able to be controlled either locally from the on-board-running control application, centrally from the base station, or by any combined approach. The system provides basic safety features and autonomous/automatic functions which significantly reduce the risks of crash or loosing the UAV, even in case of wrong command from the user application. The function and the performance of the MUAVET system is demonstrated in the search-and-rescue scenario of multiple UAVs searching for the visually-marked ground objects placed in the designated area and cooperating with the autonomous ground vehicle supposed to reach the found targets on ground.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richards, A., Bellingham, J., Tillerson, M., How, J.: Coordination and control of multiple UAVs. In: Proceedings of the AIAA Guidance, Navigation and Control Conference, AIAA 2002, p. 4588 (2002)

    Google Scholar 

  2. Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The GRASP multiple micro-UAV testbed. IEEE Robot. Autom. Mag. 17(3), 56–65 (2010)

    Article  Google Scholar 

  3. VICON optical motion capture cameras. https://vicon.com/products/camera-systems/

  4. Palacios, F.M., Quesada, E.S.E., Sanahuja, G., Salazar, S., Salazar, O.G., Carrillo, L.R.G.: Test bed for applications of heterogeneous unmanned vehicles. Int. J. Adv. Robot. Syst. 14(1), 1729881416687111 (2017)

    Google Scholar 

  5. Schmittle, M., et al.: OpenUAV: a UAV testbed for the cps and robotics community. In: Proceedings of the 9th ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS 2018, pp. 130–139. IEEE Press, Piscataway (2018)

    Google Scholar 

  6. Chudoba, J.: Muavet - system specifications. Technical report, Czech Technical University in Prague, Czech Institute of Informatics, Robotics and Cybernetics (2018)

    Google Scholar 

  7. DJI. https://www.dji.com/

  8. Pixhawk project. https://pixhawk.org/

  9. Wang, J., Olson, E.: AprilTag 2: efficient and robust fiducial detection. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4193–4198. IEEE (2016)

    Google Scholar 

  10. Barnawi, A., Al-Barakati, A.: Design and implantation of a search and find application on a heterogeneous robotic platform. J. Eng. Technol. 6(Special Issue on Technology Innovations and Applications), 381–391 (2017)

    Google Scholar 

  11. Chudoba, J.: Muavet final experiment. Technical report, Czech Technical University in Prague, Czech Institute of Informatics, Robotics and Cybernetics (2018)

    Google Scholar 

  12. WAAS T&E Team William J. Hughes Technical Center. Global positioning system (GPS), standard positioning service (SPS), performance analysis report. Technical report 96, Federal Aviation Administration, 1284 Maryland Avenue SW, Washington, DC 20024, January 2017. http://www.nstb.tc.faa.gov/reports/PAN96_0117.pdf

Download references

Acknowledgments

The system MUAVET was developed in co-operation with the King Abdulaziz University, Faculty of Computing and IT, Research group of Dr. Ahmed Barnawi.

This work was supported by the Technology Agency of the Czech Republic under project TE01020197 Center for Applied Cybernetics 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Chudoba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chudoba, J., Kozák, V., Přeučil, L. (2019). MUAVET – An Experimental Test-Bed for Autonomous Multi-rotor Applications. In: Mazal, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2018. Lecture Notes in Computer Science(), vol 11472. Springer, Cham. https://doi.org/10.1007/978-3-030-14984-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14984-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14983-3

  • Online ISBN: 978-3-030-14984-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics