Power Laws and Fractal Scattering Media

  • Sverre HolmEmail author


Much effort has been expended on finding the relationship between fractional models and fractal geometries beyond the semantic similarity. A general connection has not been found, but a geometrical and physical interpretation of fractional integration and differentiation is in Podlubny (Fractional Calculus and Applied Analysis 5:367–386, 2002).


  1. N.C. Banik, I. Lerche, R.T. Shuey, Stratigraphic filtering, part I: Derivation of the O’Doherty-Anstey formula. Geophys. 50, 2768–2774 (1985)ADSCrossRefGoogle Scholar
  2. R. Burridge, M.V. de Hoop, K. Hsu, L. Le, A. Norris, Waves in stratified viscoelastic media with microstructure. J. Acoust. Soc. Am. 94(5), 2884–2894 (1993)ADSCrossRefGoogle Scholar
  3. J.-P. Fouque, J. Garnier, G. Papanicolaou, K. Sølna, Wave Propagation and Time Reversal in Randomly Layered Media (Springer Science & Business Media, New York, 2007)zbMATHGoogle Scholar
  4. J. Garnier, K. Sølna, Pulse propagation in random media with long-range correlation. Multiscale Model Simul. 7(3), 1302–1324 (2009)MathSciNetCrossRefGoogle Scholar
  5. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 2014), 4th edn. by Y.V. Geronimus, M.Y. Tseytlin, ed. by A. JeffreyGoogle Scholar
  6. D. Hamburger, O. Biham, D. Avnir, Apparent fractality emerging from models of random distributions. Phys. Rev. E 53(4), 3342 (1996)ADSCrossRefGoogle Scholar
  7. S.A. Lambert, S.P. Näsholm, D. Nordsletten, C. Michler, L. Juge, J.-M. Serfaty, L.E. Bilston, B. Guzina, S. Holm, R. Sinkus, Bridging three orders of magnitude: Multiple scattered waves sense fractal microscopic structures via dispersion. Phys. Rev. Lett. 115(9), 094301–1–6 (2015)Google Scholar
  8. L.H. Le, R. Burridge, Waves in elastic and anelastic stratified microstructure: A numerical comparison. J. Acoust. Soc. Am. 103(1), 99–105 (1998)ADSCrossRefGoogle Scholar
  9. I. Lerche, Stratigraphic filter theory: Combined effects of parallel bedding and random inhomogeneities. Geophys. 51(8), 1531–1537 (1986)ADSCrossRefGoogle Scholar
  10. R. Marty, K. Sølna, Acoustic waves in long range random media. SIAM J. Appl. Math. 69(4), 1065–1083 (2009)MathSciNetCrossRefGoogle Scholar
  11. R.F. O’Doherty, N.A. Anstey, Reflections on amplitudes. Geophys. Prosp. 19, 430–458 (1971)ADSCrossRefGoogle Scholar
  12. I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)MathSciNetzbMATHGoogle Scholar
  13. J. Sakshaug, Simulator for sound propagation in fractal media, Master’s thesis, Technical University of Denmark, Denmark, 2011. Supervised in collaboration with the University of OsloGoogle Scholar
  14. M. Schoenberger, F. Levin, Apparent attenuation due to intrabed multiples. Geophys. 39(3), 278–291 (1974)CrossRefGoogle Scholar
  15. K. Sølna, Acoustic pulse spreading in a random fractal. SIAM J. Appl. Math. 63(5), 1764–1788 (2003)MathSciNetCrossRefGoogle Scholar
  16. E.J.G. Stordal, Power-law attenuation for acoustic waves in random stratified viscoelastic media, Master’s thesis, University of Oslo, Norway (2011), Accessed 16 June 2018
  17. J. Teixeira, Small-angle scattering by fractal systems. J. Appl. Cryst. 21(6), 781–785 (1988)CrossRefGoogle Scholar
  18. L. Wennerberg, A. Frankel, On the similarity of theories of anelastic and scattering attenuation. B. Seismol. Soc. Am. 79(4), 1287–1293 (1989)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of OsloOsloNorway

Personalised recommendations