Skip to main content

Dependency of GPA-ES Algorithm Efficiency on ES Parameters Optimization Strength

  • Conference paper
  • First Online:
  • 1103 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 554))

Abstract

In this work, the relation between number of ES iterations and convergence of the whole GPA-ES hybrid algorithm will be studied due to increasing needs to analyze and model large data sets. Evolutionary algorithms are applicable in the areas which are not covered by neural networks and deep learning like search of algebraic model of data. The difference between time and algorithmic complexity will be also mentioned as well as the problems of multitasking implementation of GPA, where external influences complicate increasing of GPA efficiency via Pseudo Random Number Generator (PRNG) choice optimization.

Hybrid evolutionary algorithms like GPA-ES uses GPA for solution structure development and Evolutionary Strategy (ES) for parameters identification are controlled by many parameters. The most significant are sizes of GPA population and sizes of ES populations related to each particular individual in GPA population. There is also limit of ES algorithm evolutionary cycles. This limit plays two contradictory roles. On one side bigger number of ES iterations means less chance to omit good solution for wrongly identified parameters, on the opposite side large number of ES iterations significantly increases computational time and thus limits application domain of GPA-ES algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brandejsky, T.: Evolutionary system to model structure and parameters regression. Neural Netw. World 12(2), 181–194 (2012). ISSN 1210-0552

    Article  Google Scholar 

  2. Brandejsky, T.: The use of local models optimized by genetic programming algorithm in biomedical-signal analysis. In: Zelinka, I., Snasel, V., Abraham, A. (eds.) Handbook of Optimization from Classical to Modern Approach, pp. 697–716 (2012). ISSN 1868-4394, ISBN 978-3-642-30503-0

    Google Scholar 

  3. Alander, T.: On optimal population size of genetic algorithms. In: Proceedings of the IEEE Computer Systems and Software Engineering, pp. 65–69 (1992)

    Google Scholar 

  4. Eiben, A.E., Hinterding, R., Michalewic, Z.: Parameter control in evolutionary algorithms. Trans. Evol. Comput. 3(2), 124–141 (1999). https://doi.org/10.1109/4235.771166

    Article  Google Scholar 

  5. Koumousis, K., Katsaras, C.P.: A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Trans. Evol. Comput. 10(1), 19–28 (2006). https://doi.org/10.1109/TEVC.2005.860765

    Article  Google Scholar 

  6. Lobo, G., Lima, C.F., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary Algorithms. Studies in Computational Intelligence, vol. 54. Springer, Heidelberg (2007). ISBN 978-3-540-69431-1

    MATH  Google Scholar 

  7. Reeves, C.R.: Using genetic algorithms with small populations. In: Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, pp. 92–99 (1993). ISBN 1-55860-299-2

    Google Scholar 

  8. Piszcz, A., Soul, T.: Genetic programming: optimal population sizes for varying complexity problems. In: Proceedings of the Genetic and Evolutionary Computation Conference GECCO, Seattle, pp. 953–954 (2006). https://doi.org/10.1145/1143997.1144166

  9. Brandejsky, T.: Small populations in GPA-ES algorithm. In: Matousek, R., (ed.) 19th International Conference on Soft Computing, MENDEL 2013, Brno, pp. 31–36 (2013). ISSN 1803-3814, ISBN 978-80-214-4755-4

    Google Scholar 

Download references

Acknowledgements

Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042), is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Brandejsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brandejsky, T. (2020). Dependency of GPA-ES Algorithm Efficiency on ES Parameters Optimization Strength. In: Zelinka, I., Brandstetter, P., Trong Dao, T., Hoang Duy, V., Kim, S. (eds) AETA 2018 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application. AETA 2018. Lecture Notes in Electrical Engineering, vol 554. Springer, Cham. https://doi.org/10.1007/978-3-030-14907-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14907-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14906-2

  • Online ISBN: 978-3-030-14907-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics