Skip to main content

Invasive Plants in Coastal Wetlands: Patterns and Mechanisms

  • Chapter
  • First Online:
Wetlands: Ecosystem Services, Restoration and Wise Use

Part of the book series: Ecological Studies ((ECOLSTUD,volume 238))

Abstract

As typically distinctive ecotones, coastal wetlands have been narrowing between halophytic plant communities such as mangroves, salt marsh, and seagrass. Plant invasions can be magnified because of high dynamics in these regions. Multiple and rapid global change factors combined with strong anthropogenic disturbance would greatly aggravate the invasiveness of some plants and ecosystem invisibility. To date, about 30 species including trees, shrubs, grass, and vine were found as invasive plants in coastal wetlands according to a current♠ database. Most of them were introduced by humans with purposes of ornamental, seawall protection, or ecosystem reforestation. After tens or hundreds years of introduction, some ecological consequences have emerged, and their invasiveness has been proved. For some species with economic values or ecological reforestation advantages, overuse or management increased their spread and survival in new habitats. However, there are still many species with an invasive potential that should be studied. Some effective evaluating systems for their risk assessments are urgently needed. Looking forward for long-term planning improved databases, and new predictive tools that could be integrated to provide benefits in any future scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainouche M, Chelaifa J, Ferreira S, Bellot A, Ainouche A, Salmon A (2012) Polyploid evolution in Spartina: dealing with highly redundant hybrid genomes. In: Soltis PS, Soltis DE (eds) Polyploidy and genome evolution. Springer, Berlin, pp 225–243

    Chapter  Google Scholar 

  • Allen JA (1998) Mangroves as alien species: the case of Hawaii. Glob Ecol Biogeogr Lett 7:61–71

    Article  Google Scholar 

  • Alongi DM (2014) Carbon cycling and storage in mangrove forests. Annu Rev Mar Sci 6:195–219

    Article  Google Scholar 

  • An S, Gu B, Zhou C, Wang Z, Deng Z, Zhi Y, Li H, Chen L, Yu D, Liu Y (2007) Spartina invasion in China: implications for invasive species management and future research. Weed Res 47:183–191

    Article  Google Scholar 

  • Ayres DR, Strong DR (2001) Origin and genetic diversity of Spartina anglica (Poaceae) using nuclear DNA markers. Am J Bot 88:1863–1867

    Article  CAS  PubMed  Google Scholar 

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic, New York, pp 147–172

    Google Scholar 

  • Baumel A, Ainouche ML, Misset MT, Gourret JP, Bayer RJ (2003) Genetic evidence for hybridization between the native Spartina maritima and the introduced Spartina alterniflora (Poaceae) in South-West France: Spartina × neyrautii re-examined. Plant Syst Evol 237:87–97

    Article  CAS  Google Scholar 

  • Bouma TJ, De Vries MB, Herman PMJ (2010) Comparing ecosystem engineering efficiency of two plant species with contrasting growth strategies. Ecology 91:2696–2704

    Article  CAS  PubMed  Google Scholar 

  • Brown BJ, Mitchell RJ (2001) Competition for pollination: effects of pollen of an invasive plant on seed set of a native congener. Oecologia 129:43–49

    Article  PubMed  Google Scholar 

  • Chambers RM, Meyerson LA, Saltonstall K (1999) Expansion of Phragmites australis into tidal wetlands of North America. Aquat Bot 64:261–273

    Article  Google Scholar 

  • Chen L, Tam NFY, Huang J, Zeng X, Meng X, Zhong C, Wong Y, Lin G (2008) Comparison of ecophysiological characteristics between introduced and indigenous mangrove species in China. Estuar Coast Shelf Sci 79:644–652

    Article  Google Scholar 

  • Chen L, Wang W, Zhang Y, Lin G (2009) Recent progresses in mangrove conservation, restoration and research in China. J Plant Ecol 2:45–54

    Article  Google Scholar 

  • Chen L, Zeng X, Tam NFY, Lu W, Luo Z, Du X, Wang J (2012) Comparing carbon sequestration and stand structure of monoculture and mixed mangrove plantations of Sonneratia caseolaris and S. apetala in Southern China. For Ecol Manag 284:222–229

    Article  Google Scholar 

  • Chen L, Tam NFY, Wang W, Zhang Y, Lin G (2013) Significant niche overlap between native and exotic Sonneratia mangrove species along a continuum of varying inundation periods. Estuar Coast Shelf Sci 117:22–28

    Article  Google Scholar 

  • Chen L, Wang W, Li Q, Zhang Y, Yang S, Osland M, Huang J, Peng C (2017) Mangrove species’ responses to winter air temperature extremes in China. Ecosphere 8:e01865

    Article  Google Scholar 

  • Comeaux RS, Allison MA, Bianchi TS (2012) Mangrove expansion in the Gulf of Mexico with climate change: implications for wetland health and resistance to rising sea levels. Estuar Coast Shelf Sci 96:81–95

    Article  CAS  Google Scholar 

  • Conner WH, Duberstein JA, Day JW Jr, Hutchinson S (2014) Impacts of changing hydrology and hurricanes on forest structure and growth along a flooding/elevation gradient in a south Louisiana forested wetland from 1986 to 2009. Wetlands 34:803–814

    Article  Google Scholar 

  • Cooke GP (1917) Letter appended to paper by V. MacCaughey. Hawaii For Agric 14:365–366

    Google Scholar 

  • Cormier N, Krauss KW, Conner WH (2013) Periodicity in stem growth and litterfall in tidal freshwater forested wetlands: influence of salinity and drought on nitrogen recycling. Estuar Coasts 36:533–546

    Article  CAS  Google Scholar 

  • Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK (2014) Changes in the global value of ecosystem services. Glob Environ Chang 26:152–158

    Article  Google Scholar 

  • Crooks JA (2002) Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153–166

    Article  Google Scholar 

  • D’Iorio M (2003) Mangroves and shoreline change on Molokai, Hawaii: assessing the role of introduced Rhizophora mangle in sediment dynamics and coastal change using remote sensing and GIS. Ph.D. diss., University of California—Santa Cruz, Santa Cruz

    Google Scholar 

  • Daehler CC, Strong DR (1996) Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA. Biol Conserv 78:51–58

    Article  Google Scholar 

  • Demopoulos AWJ, Fry B, Smith CR (2007) Food web structure in exotic and native mangroves: a Hawaii-Puerto Rico comparison. Oecologia 153:675–686

    Article  PubMed  Google Scholar 

  • Di Tomaso JM (1998) Impact, biology, and ecology of saltcedar (Tamarix spp.) in the southwestern United States. Weed Technol 12:326–336

    Article  Google Scholar 

  • Ducks JS (2011) Responses of invasive species to a changing climate and atmosphere. In: Richardson DM (ed) Fifty years of invasion ecology: the legacy of Charles Elton. Blackwell, Chichester

    Google Scholar 

  • Duke NC (2006) Australia’s Mangroves. University of Queensland, Queensland

    Google Scholar 

  • Ewe SML, Sternberg LSL (2005) Growth and gas exchange responses of Brazilian pepper (Schinus terebinthifolius) and native South Florida species to salinity. Trees Struct Funct 19:119–128

    Article  Google Scholar 

  • Feng J, Guo J, Huang Q, Jiang J, Huang G, Yang Z, Lin G (2014) Changes in the community structure and diet of benthic macrofauna in invasive Spartina alterniflora wetlands following restoration with native mangroves. Wetlands 34:673–683

    Article  Google Scholar 

  • Feng J, Huang Q, Chen H, Guo J, Lin G (2017) Restoration of native mangrove wetlands can reverse diet shifts of benthic macrofauna caused by invasive cordgrass. J Appl Ecol 55:905–916

    Article  CAS  Google Scholar 

  • Fourqurean JW, Cuarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O (2012) Global carbon stocks in seagrass ecosystems. Nat Geosci 5:505–509

    Article  CAS  Google Scholar 

  • Fu S, Cai L, Cao J, Chen X (2017) Nematode responses to the invasion of exotic Spartina in mangrove wetlands in southern China. Estuar Coasts 40:1437–1449

    Article  CAS  Google Scholar 

  • Gan X, Cai Y, Choi C, Ma Z, Chen J, Li B (2009) Potential impacts of invasive Spartina alterniflora on spring bird communities at Chongming Dongtan, a Chinese wetland of international importance. Estuar Coast Shelf Sci 83:211–218

    Article  Google Scholar 

  • Gao X, Wang M, Wu H, Wang W, Tu Z (2018) Effects of Spartina alterniflora invasion on the diet of mangrove crabs (Parasesarma plicata) in the Zhangjiang Estuary, China. J Coast Res 34:106–113

    Article  CAS  Google Scholar 

  • GISD (2015) Global invasive species database (http://iucngisd.org/gisd/) of Invasive Species Specialist Group (ISSG)

  • Gordon DR, Riddle B, Pheloung PC, Ansari S, Buddenhagen C, Chimera C, Daehler CC, Dawson W, Denslow JS, Tshidada NJ, LaRosa A, Nishida T, Onderdonk DA, Panetta FD, Pyšek P, Randall RP, Richardson DM, Virtue JG, Williams PA (2010) Guidance for addressing the Australian Weed Risk Assessment questions. Plant Prot Q 25:56–74

    Google Scholar 

  • GRIIS. Global Register of Introduced and Invasive Species (http://www.griis.org)

  • He Q, Cui B, An Y (2012) Physical stress, not biotic interactions, preclude an invasive grass from establishing in forb-dominated salt marshes. PLoS One 7:e33164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22:534–543

    Article  PubMed  Google Scholar 

  • Huang M, Du X, Liao M, Chen L, Lin G (2012) Photosynthetic characteristics and water use strategies of coastal shelterbelt plant species in Southeast China. Chin J Ecol 31:2996–3002

    Google Scholar 

  • IPCC (2013) Summary for Policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • ISSG (2018) Invasive species specialist group. http://www.issg.org/

    Google Scholar 

  • Kowarik I (1995) Time lags in biological invasions with regard to the success and failure of alien species. In: Pysek P, Prach K, Rejmanek M (eds) Plant invasions. General aspects and special problems. SPB Academic Publishing, Amsterdam, pp 15–38

    Google Scholar 

  • Krauss KW, Young PJ, Chambers JL, Doyle TW, Twilley RR (2007) Sap flow characteristics of neotropical mangroves in flooded and drained soils. Tree Physiol 27:775–783

    Article  PubMed  Google Scholar 

  • Krauss KW, McKee KL, Lovelock CE, Cahoon DR, Saintilan N, Reef R, Chen L (2014) How mangrove forests adjust to rising sea level. New Phytol 202:19–34

    Article  PubMed  Google Scholar 

  • Langley JA, Megonigal JP (2010) Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466:96–99

    Article  CAS  PubMed  Google Scholar 

  • Lee SY (2009) The effect of mangrove leaf litter enrichment on macrobenthic colonization of defaunated sandy substrates. Estuar Coast Shelf Sci 49:703–712

    Article  Google Scholar 

  • Li Y, Zheng DZ, Chen HX, Liao B, Zheng S, Chen X (1998) Preliminary study on introduction of Mangrove Sonneratia apetala Buch-Ham. Chin J For Res 11:39–44

    Google Scholar 

  • Li B, Liao C, Zhang X, Chen H, Wang Q, Chen Z, Gan X, Wu J, Zhao B, Ma Z, Cheng X, Jiang L, Chen J (2009) Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects. Ecol Eng 35:511–520

    Article  CAS  Google Scholar 

  • Li F, Yang Q, Zan QJ, Tam NFY, Shin PKS, Vrijmoed LLP, Cheung SG (2011) Differences in leaf construction cost between alien and native mangrove species in Futian, Shenzhen, China: implications for invasiveness of alien species. Mar Pollut Bull 62:1957–1962. https://doi.org/10.1016/j.marpolbul.2011.06.032

    Article  CAS  PubMed  Google Scholar 

  • Liao B, Zheng S, Chen Y, Li M, Li Y (2004) Biological characteristics of ecological adaptability for nonindigenous mangroves species Sonneratia apetala. Chin J Ecol 23:10–15

    Google Scholar 

  • Liu W, Maung-Douglass K, Strong DR, Pennings SC, Zhang Y (2016) Geographical variation in vegetative growth and sexual reproduction of the invasive Spartina alterniflora in China. J Ecol 104:173–181

    Article  CAS  Google Scholar 

  • Liu W, Strong DR, Pennings SC, Zhang Y (2017) Provenance-by-environment interaction of reproductive traits in the invasion of Spartina alterniflora in China. Ecology 98:1591–1599

    Article  PubMed  Google Scholar 

  • Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Blackwell, Malden, p 275

    Google Scholar 

  • Lowe S, Browne M, Boudjelas S (2000) 100 of the world’s worst invasive alien species. A selection from the global invasive species database. Invasive Species Specialist Group, Auckland

    Google Scholar 

  • Lunstrum A, Chen L (2014) Soil carbon stocks and accumulation in young mangrove forests. Soil Biol Biochem 75:223–232

    Article  CAS  Google Scholar 

  • Ma Z, Gan X, Cai Y, Chen J, Li B (2011) Effects of exotic Spartina alterniflora on the habitat patch associations of breeding saltmarsh birds at Chongming Dongtan in the Yangtze River estuary, China. Biol Invasions 13:1673–1686

    Article  Google Scholar 

  • Ma Z, Gan X, Choi C, Li B (2013) Effects of invasive cordgrass on presence of marsh grassbird in an area where it is not native: plant invader effects on a non-native bird. Conserv Biol 28:150–158

    Article  Google Scholar 

  • Marvier M, Kareiva P, Neubert MG (2004) Habitat destruction, fragmentation, and disturbance promote invasion by habitat generalists in a multispecies metapopulation. Risk Anal 24:869–878

    Article  PubMed  Google Scholar 

  • McKee KL, Rooth JE (2008) Where temperate meets tropical: multi-factorial effects of elevated CO2, nitrogen enrichment, and competition on a mangrove-salt marsh community. Glob Chang Biol 14:971–984

    Article  Google Scholar 

  • Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR (2002) Responses of coastal wetlands to rising sea level. Ecology 83:2869–2877

    Article  Google Scholar 

  • Morris JT, Porter D, Neet M, Noble PA, Schmidt L, Lapine LA, Jensen JR (2005) Integrating LIDAR elevation data, multi-spectral imagery and neural network modelling for marsh characterization. Int J Remote Sens 26:5221–5234

    Article  Google Scholar 

  • Odum WE, Heald EJ (1972) Trophic analysis of an estuarine mangrove community. Bull Mar Sci 22:671–738

    Google Scholar 

  • Osland MJ, Enwright N, Day RH, Doyle TW (2013) Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States. Glob Chang Biol 19:1482–1494

    Article  PubMed  Google Scholar 

  • Pathikonda S, Ackleh AS, Hasenstein KH, Mopper AS (2008) Invasion, disturbance, and competition: modeling the fate of coastal plant populations. Conserv Biol 23:164–173

    Article  PubMed  Google Scholar 

  • Pyšek P, Richardson DM (2010) Invasive species, environmental change and management, and health. Annu Rev Environ Resour 35:25–55

    Article  Google Scholar 

  • Pyšek P, Křivánek M, Jarošík V (2009) Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology 90:2734–2744

    Article  PubMed  Google Scholar 

  • Rabinowitz D (1978) Early growth of mangrove seedlings in Panama, and an hypothesis concerning the relationship of dispersal and zonation. J Biogeogr 5:113–133

    Article  Google Scholar 

  • Reichard SH, Hamilton CW (1997) Predicting invasions of woody plants introduced into North America. Conserv Biol 11:193–203

    Article  Google Scholar 

  • Rejmánek M (2014) Invasive trees and shrubs: where do they come from and what we should expect in the future? Biol Invasions 16:483–498

    Article  Google Scholar 

  • Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive alien species–2013 update of the global database. Divers Distrib 19:1093–1094

    Article  Google Scholar 

  • Rejmánek M, Richardson DM, Higgins SI, Pitcairn MJ, Grotkopp E (2005) Ecology of invasive plants-state of the art. In: Mooney HA, Mack RN, Mc Neely JA, Neville L, Schei PJ, Waage J (eds) Invasive alien species: a new synthesis. Island Press, Washington, D.C., pp 104–161

    Google Scholar 

  • Ren H, Lu H, Shen W, Huang C, Guo Q, Li Z, Jian S (2009) Sonneratia apetala Buch.Ham in the mangrove ecosystems of China: an invasive species or restoration species? Ecol Eng 35:1243–1248

    Article  Google Scholar 

  • Rey JR (2015) Coastal wetlands. In: Kennish MJ (ed) Encyclopedia of estuaries. Springer, Dordrecht

    Google Scholar 

  • Richardson DM, Rejmánek M (2011) Tree and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Robertson AI, Alongi DM, Boto KG (1992) Food chains and carbon fluxes. In: Robertson AI, Alongi DM (eds) Tropical mangrove ecosystems, Coastal and estuarine series, vol 41. American Geophysical Union, Washington, pp 293–326

    Chapter  Google Scholar 

  • Ross MS, Ruiz PR, Sah JS, Hanan EJ (2009) Chilling damage in a changing climate in coastal landscapes of the subtropical zone: a case study from south Florida. Glob Chang Biol 15:1817–1832

    Article  Google Scholar 

  • Saenger P, Bellan MF (1995) The mangrove vegetation of the Atlantic Coast of Africa: a review. Université de Toulouse, Toulouse

    Google Scholar 

  • Saenger P, Hegerl EJ, Davie JDS (1983) Global status of mangrove ecosystems. Environmentalist 3(Supplement):1–88

    Google Scholar 

  • Saintilan N, Wilson NC, Rogers K, Rajkaran A, Krauss KW (2014) Mangrove expansion and salt marsh decline at mangrove poleward limits. Glob Chang Biol 20:147–157

    Article  PubMed  Google Scholar 

  • Salinas LM, Delaune RD, Patrick WH Jr (1986) Changes occurring along a rapidly submerging coastal area: Louisiana, UAS. J Coast Res 2:269–284

    Google Scholar 

  • Siddiqi NA (2001) Mangrove forestry in Bangladesh. Nibedan Press, Chittagong

    Google Scholar 

  • Spalding M, Kainuma M, Collins L (2010) World atlas of mangroves. Earthscan, London

    Book  Google Scholar 

  • Strong DR, Ayres DA (2009) Spartina introductions and consequences in salt marshes: arrive, survive, thrive, and sometimes hybridize. In: Silliman BR, Bertness MD, Grosholz ED (eds) Human impacts on salt marshes: a global perspective. Univ. Calif. Press, Berkeley, pp 3–22

    Google Scholar 

  • Strong DR, Ayres DA (2013) Ecological and evolutionary misadventures of Spartina. Annu Rev Ecol Evol Syst 44:389–410

    Article  Google Scholar 

  • Teo S, Ang WF, Lok AFSL, Kurukulasuriya BR, Tan HTW (2010) The status and distribution of the Nipa Palm, Nypa fruticans Wurmb. (Arecaceae), in Singapore. Nat Singap 3:45–52

    Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Tucker KC, Richardson DM (1995) An expert system for screening potentially invasive alien plants in South African Fynbos. J Environ Manag 44:309–338

    Article  Google Scholar 

  • Turner CE, Center TD, Burrows DW, Buckingham GR (1998) Ecology and management of Melaleuca quinquenervia, an invader of wetlands in Florida, USA. Wetl Ecol Manag 5:165–178

    Article  Google Scholar 

  • Upadhyay VP, Mishra PK (2010) Phenology of mangroves tree species on Orissa coast, India. Trop Ecol 51:289–295

    Google Scholar 

  • Westbrooks R (1998) Invasive plants, changing the landscape of America: fact book. Federal Interagency Committee for the Management of Noxious and Exotic Weeds (FICMNEW), Washington, D.C.. 109 pp

    Google Scholar 

  • Williamson M (1996) Biological invasions. Chapman & Hall, London

    Google Scholar 

  • Willis CG, Ruhfel BR, Primack RB, Miller-Rushing AJ, Losos JB, Davis CC (2010) Favorable climate change response explains non-native species’ success in Thoreau’s woods. PLoS One 5:e8878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • With KA (2002) The landscape ecology of invasive spread. Conserv Biol 16:1192–1203

    Article  Google Scholar 

  • Woo I, Zedler JB (2002) Can nutrients alone shift a sedge meadow towards dominance by the invasive Typha × glauca? Wetlands 22:509–521

    Article  Google Scholar 

  • Xu G, Zhuo R (1985) Preliminary studies of introduced Spartina alterniflora Loisel in China. J Nanjing Univ Nat Sci 40:212–225

    Google Scholar 

  • Yang Y, Li J, Yang S, Li X, Fang L, Zhong C, Duke NC, Zhou R, Shi S (2017) Effects of Pleistocene sea-level fluctuations on mangrove population dynamics: a lesson from Sonneratia alba. BMC Evol Biol 17:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Zan QJ, Wang YJ, Wang BS, Liao WB, Li MG (2000) The distribution and harm of the exotic weed Mikania micrantha. Chin J Ecol 19:58–61

    Google Scholar 

  • Zedler JB, Kercher S (2004) Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Crit Rev Plant Sci 23:431–452

    Article  Google Scholar 

  • Zhang Y, Huang G, Wang W, Chen L, Lin G (2012) Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China. Ecology 93:588–597

    Article  PubMed  Google Scholar 

  • Zhao H, Yang S, Guo X, Peng C, Gu X, Deng C, Chen L (2018) Anatomical explanations for acute depressions in radial pattern of axial sap flow in two diffuse-porous mangrove species: implications for water use. Tree Physiol 38:277–287

    Article  Google Scholar 

  • Zhou T, Liu S, Feng Z, Liu G, Gan Q, Peng S (2015) Use of exotic plants to control Spartina alterniflora invasion and promote mangrove restoration. Sci Rep 5:12980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo P, Zhao SH, Liu CA, Wang CH, Liang YB (2012) Distribution of Spartina spp. along China’s coast. Ecol Eng 40:160–166

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge partial financial from the National Natural Science Foundation of China (NSFC) (41476071 and 31770579) and the UNDP-GEF Hainan Wetland Protected Area System Project (00084186) in China “Strengthening the Management Effectiveness of the Wetland Protected Area System in Hainan for Conservation of Globally Significant Biodiversity.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luzhen Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, L. (2019). Invasive Plants in Coastal Wetlands: Patterns and Mechanisms. In: An, S., Verhoeven, J. (eds) Wetlands: Ecosystem Services, Restoration and Wise Use. Ecological Studies, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-030-14861-4_5

Download citation

Publish with us

Policies and ethics