Skip to main content

Wetland Effects on Global Climate: Mechanisms, Impacts, and Management Recommendations

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 238))

Abstract

Wetlands are key locations in the landscape for the production, consumption, and exchange of greenhouse gases with the atmosphere. In this chapter, we review the major controls of wetland greenhouse gas fluxes and consider how wetlands influence global climate. It is a challenge to determine the overall climatic role of a wetland as the conclusion can vary depending on whether one wants to know the radiative balance over a defined period of time, the radiative forcing since 1750, or the lifetime climatic role of a wetland. For many wetlands, it is the long-term accumulation of soil carbon that eventually dominates the overall climatic impact of the wetland, such that wetlands that are hundreds to thousands of years old may have a lifetime cooling effect. Using a dynamic modeling approach, we consider how wetland disturbance, restoration, and mitigation affect wetland climate impacts. When a wetland is degraded, its functioning is reduced and greenhouse gas fluxes can change, thus altering the overall climatic role of the wetland. We demonstrate that disturbances to existing wetlands can cause warming that persists long after a wetland is restored or replaced by a mitigation wetland. Thus, activities that disturb wetlands and lead to the oxidation of sequestered soil carbon should be avoided to the maximum possible extent. Climate regulation is just one ecosystem service provided by wetlands; informed environmental management should consider the full range of wetland services and disservices when developing plans for wetland creation, restoration, and protection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Belyea LR, Clymo RS (2001) Feedback control of the rate of peat formation. Proc R Soc B Biol Sci 268:1315–1321. https://doi.org/10.1098/rspb.2001.1665

    Article  CAS  Google Scholar 

  • Belyea LR, Malmer N (2004) Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Glob Chang Biol 10:1043–1052

    Article  Google Scholar 

  • Berntsen T, Fuglestvedt J, Joshi M et al (2005) Response of climate to regional emissions of ozone precursors: sensitivities and warming potentials. Tellus B 57B:283–304. https://doi.org/10.1111/j.1600-0889.2005.00152.x

    Article  CAS  Google Scholar 

  • Bragg OM (2002) Hydrology of peat-forming wetlands in Scotland. Sci Total Environ 294:111–129

    Article  CAS  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK et al (2006) The carbon balance of North American wetlands. Wetlands 26:889–916. https://doi.org/10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2

    Article  Google Scholar 

  • Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol 19:1325–1346. https://doi.org/10.1111/gcb.12131

    Article  PubMed  Google Scholar 

  • Brinson M, Lugo A, Brown S (1981) Primary productivity, decomposition and consumer activity in freshwater wetlands. Annu Rev Ecol Syst 12:123–161

    Article  Google Scholar 

  • Brown PH, Lant CL (1999) The effect of wetland mitigation banking on the achievement of no-net-loss. Environ Manag 23:333–345

    Article  CAS  Google Scholar 

  • Chapin FS III, Woodwell GM, Randerson JT et al (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–1050. https://doi.org/10.1007/s10021-005-0105-7

    Article  CAS  Google Scholar 

  • Chimner RA, Cooper DJ (2003) Influence of water table levels on CO2 emissions in a Colorado subalpine fen: an in situ microcosm study. Soil Biol Biochem 35:345–351

    Article  CAS  Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem Cycles 17:Article 1111

    Article  Google Scholar 

  • Chung ES, Soden B, Sohn BJ, Shi L (2014) Upper-tropospheric moistening in response to anthropogenic warming. Proc Natl Acad Sci 111:11636–11641

    Article  CAS  Google Scholar 

  • Cornell JA, Craft CB, Megonigal JP (2007) Ecosystem gas exchange across a created salt marsh chronosequence. Wetlands 27:240–250

    Article  Google Scholar 

  • Cornwell JC, Kemp WM, Kana TM (1999) Denitrification on coastal ecosystems: methods, environmental controls, and ecosystem level controls, a review. Aquat Ecol 33:41–54

    Article  CAS  Google Scholar 

  • Costanza R, d’Arge R, de Groot R et al (1997) The value of the world’s ecosystem services and natural capital. Nature 367:253–260

    Article  Google Scholar 

  • Craft CB, Reader J, Sacco JN, Broome SW (1999) Twenty-five years of ecosystem development of constructed Spartina alterniflora (Loisel) marshes. Ecol Appl 9:1405–1419

    Article  Google Scholar 

  • Cyranoski D (2009) Putting China’s wetlands on the map. Nature 458:134. https://doi.org/10.1038/458134a

    Article  CAS  PubMed  Google Scholar 

  • Davidson EA, Keller M, Erickson HE et al (2000) Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50:667–680

    Article  Google Scholar 

  • Day RH, Williams TM, Swarzenski CM (2007) Hydrology of tidal freshwater forested wetlands of the Southeastern United States. In: Conner WH, Doyle TW, Krauss KW (eds) Ecology of tidal freshwater forested wetlands of the Southeastern United States. Springer, Dordrecht, pp 29–63

    Chapter  Google Scholar 

  • de Groot R, Brander L, van der Ploeg S et al (2012) Global estimates of the value of ecosystems and their services in monetary units. Ecosyst Serv 1:50–61. https://doi.org/10.1016/j.ecoser.2012.07.005

    Article  Google Scholar 

  • DeLaune RD, Boar RR, Lindau CW, Kleiss BA (1996) Denitrification in bottomland hardwood wetland soils. Wetlands 16:309–320

    Article  Google Scholar 

  • Drexler JZ, Snyder RL, Spano D et al (2004) A review of models and micrometeorological methods used to estimate wetland evapotranspiration. Hydrol Process 18:2071–2101

    Article  Google Scholar 

  • Etheridge DM, Steele LP, Langenfelds RL et al (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res Atmos 101:4115–4128

    Article  CAS  Google Scholar 

  • Fraser CJD, Roulet NT, Moore TR (2001) Hydrology and dissolved organic carbon biogeochemistry in an ombrotrophic bog. Hydrol Process 15:3151–3166

    Article  Google Scholar 

  • Freeman C, Ostle N, Kang H (2001) An enzymic “latch” on a global carbon store. Nature 409:149

    Article  CAS  Google Scholar 

  • Frolking S, Roulet NT (2007) Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Glob Chang Biol 13:1079–1088. https://doi.org/10.1111/j.1365-2486.2007.01339.x

    Article  Google Scholar 

  • Frolking S, Roulet N, Fuglestvedt J (2006) How northern peatlands influence the earth’s radiative budget: sustained methane emission versus sustained carbon sequestration. J Geophys Res 111:G01008. https://doi.org/10.1029/2005JG000091

    Article  CAS  Google Scholar 

  • Frolking S, Talbot J, Jones MC et al (2011) Peatlands in the earth’s 21st century climate system. Environ Rev 19:371–396

    Article  CAS  Google Scholar 

  • Fuglestvedt J, Isaksen I, Wang W-C (1996) Estimates of indirect global warming potentials for CH4, CO and NOx. Clim Chang 34:405–437. https://doi.org/10.1007/BF00139300

    Article  CAS  Google Scholar 

  • Gauci V, Matthews E, Dise NB et al (2004) Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries. Proc Natl Acad Sci 101:12583–12587

    Article  CAS  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Granek E, Ruttenberg BI (2008) Changes in biotic and abiotic processes following mangrove clearing. Estuar Coast Mar Sci 80:555–562

    Article  Google Scholar 

  • Guillemette F, del Giorgio PA (2011) Reconstructing the various facets of dissolved organic carbon bioavailability in freshwater ecosystems. Limnol Oceanogr 56:734–748

    Article  CAS  Google Scholar 

  • Hansen VD, Nestlerode JA (2014) Carbon sequestration in wetland soils of the northern Gulf of Mexico coastal region. Wetl Ecol Manag 22:289–303

    Article  CAS  Google Scholar 

  • Harriss RC, Sebacher DI, Day FP Jr (1982) Methane flux in the great dismal swamp. Nature 297:673–674

    Article  CAS  Google Scholar 

  • Hartmann DL, Klein Tank AMG, Rusticucci M et al (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Hayashi M, van der Kamp G, Rudolph DL (1998) Water and solute transfer between a prairie wetland and adjacent uplands, 1. Water balance. J Hydrol 207:42–55

    Article  CAS  Google Scholar 

  • Hefting MM, Bobbink R, de Caluwe H (2003) Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones. J Environ Qual 32:1194–1203

    Article  CAS  Google Scholar 

  • Herbert ER, Boon P, Burgin AJ et al (2015) A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6:art206. https://doi.org/10.1890/ES14-00534.1

    Article  Google Scholar 

  • Hopkinson CS (1992) A comparison of ecosystem dynamics in freshwater wetlands. Estuaries 15:549–562. https://doi.org/10.2307/1352397

    Article  CAS  Google Scholar 

  • Hopkinson CS, Vallino JJ, Nolin A (2002) Decomposition of dissolved organic matter from the continental margin. Deep Sea Res Part II Top Stud Oceanogr 49:4461–4478

    Article  CAS  Google Scholar 

  • Hughes CE, Binning P, Willgoose GR (1998) Characterisation of the hydrology of an estuarine wetland. J Hydrol 211:34–49

    Article  Google Scholar 

  • Johnson C, Derwent R (1996) Relative radiative forcing consequences of global emissions of hydrocarbons, carbon monoxide and NOx from human activities estimated with a zonally-averaged two-dimensional model. Clim Chang 34:439–462

    Article  CAS  Google Scholar 

  • Joos F, Roth R, Fuglestvedt JS et al (2013) Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos Chem Phys 13:2793–2825. https://doi.org/10.5194/acp-13-2793-2013

    Article  CAS  Google Scholar 

  • Joye SB, Hollibaugh JT (1995) Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments. Science 270:623–625

    Article  CAS  Google Scholar 

  • Kettunen A, Kaitala V, Lehtinen A et al (1999) Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires. Soil Biol Biochem 31:1741–1749

    Article  CAS  Google Scholar 

  • Khan H, Brush GS (1994) Nutrient and metal accumulation in a freshwater tidal marsh. Estuaries 17:345–360

    Article  CAS  Google Scholar 

  • Kip N, Van Winden JF, Pan Y et al (2010) Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nat Geosci 3:617–621. https://doi.org/10.1038/ngeo939

    Article  CAS  Google Scholar 

  • Kroeger KD, Crooks S, Moseman-Valtierra S, Tang J (2017) Restoring tides to reduce methane emissions in impounded wetlands: a new and potent blue carbon climate change intervention. Sci Rep 7:11914

    Article  Google Scholar 

  • Limpens J, Berendse F, Blodau C et al (2008) Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences 5:1475–1491. https://doi.org/10.5194/bg-5-1475-2008

    Article  CAS  Google Scholar 

  • MacDonald JA, Fowler D, Hargreaves KJ et al (1998) Methane emission rates from a northern wetland: response to temperature, water table and transport. Atmos Environ 32:3219–3227

    Article  CAS  Google Scholar 

  • Majumdar D (2013) Biogeochemistry of N2O uptake and consumption in submerged soils and rice fields and implications in climate change. Crit Rev Environ Sci Technol 43:2653–2684

    Article  CAS  Google Scholar 

  • Maltby E (1986) Waterlogged wealth. Earthscan, London

    Google Scholar 

  • Mcleod E, Chmura GL, Bouillon S et al (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560. https://doi.org/10.1890/110004

    Article  Google Scholar 

  • Megonigal JP, Schlesinger WH (1997) Enhanced CH4 emissions from a wetland soil exposed to elevated CO2. Biogeochemistry 37:77–88

    Article  CAS  Google Scholar 

  • Megonigal JP, Hines ME, Visscher PT (2004) Anaerobic metabolism: linkages to trace gases and aerobic metabolism. In: Schlesinger WH (ed) Biogeochemistry. Elsevier-Pergamon, Oxford, pp 317–424

    Google Scholar 

  • Middelburg JJ (1989) A simple rate model for organic matter decomposition in marine sediments. Geochim Cosmochim Acta 53:1577–1581

    Article  CAS  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: wetlands and water synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2015) Wetlands, 5th edn. Wiley, New York

    Google Scholar 

  • Mitsch WJ, Wilson RF (1996) Improving the success of wetland creation and restoration with know-how, time, and self-design. Ecol Appl 6:77–83

    Article  Google Scholar 

  • Mitsch WJ, Bernal B, Nahlik AM et al (2013) Wetlands, carbon, and climate change. Landsc Ecol 28:583–597. https://doi.org/10.1007/s10980-012-9758-8

    Article  Google Scholar 

  • Mitsch WJ, Zhang L, Waletzko E, Bernal B (2014) Validation of the ecosystem services of created wetlands: two decades of plant succession, nutrient retention, and carbon sequestration in experimental riverine marshes. Ecol Eng 72:11–24

    Article  Google Scholar 

  • Moore TR, Knowles R (1989) The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can J Soil Sci 69:33–38

    Article  CAS  Google Scholar 

  • Morris JT, Sundareshwar PV, Nietch CT et al (2002) Responses of coastal wetlands to rising sea level. Ecology 83:2869–2877

    Article  Google Scholar 

  • Moseman-Valtierra S (2012) Reconsidering the climatic role of marshes: are they sinks or sources of greenhouse gases? In: Abreu DC, de Borbón SL (eds) Marshes: ecology, management and conservation. Nova Scientific Publishers, Hauppauge, NY, pp 1–48

    Google Scholar 

  • Moseman-Valtierra S, Gonzalez R, Kroeger KD et al (2011) Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O. Atmos Environ 45:4390–4397. https://doi.org/10.1016/j.atmosenv.2011.05.046

    Article  CAS  Google Scholar 

  • Myhre G, Shindell D, Bréon F-M et al (2013a) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 659–740

    Google Scholar 

  • Myhre G, Shindell D, Bréon F-M et al (2013b) Anthropogenic and natural radiative forcing, spplementary material. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, p 8SM1-44. www.climatechange2013.org, www.ipcc.ch

  • Neubauer SC (2014) On the challenges of modeling the net radiative forcing of wetlands: reconsidering Mitsch et al. (2013). Landsc Ecol 29:571–577. https://doi.org/10.1007/s10980-014-9986-1

    Article  Google Scholar 

  • Neubauer SC, Megonigal JP (2015) Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18:1000–1013. https://doi.org/10.1007/s10021-015-9879-4

    Article  Google Scholar 

  • Neubauer SC, Miller WD, Anderson IC (2000) Carbon cycling in a tidal freshwater marsh ecosystem: a carbon gas flux study. Mar Ecol Prog Ser 199:13–30

    Article  CAS  Google Scholar 

  • Neubauer SC, Anderson IC, Constantine JA, Kuehl SA (2002) Sediment deposition and accretion in a mid-Atlantic (U.S.A.) tidal freshwater marsh. Estuar Coast Shelf Sci 54:713–727. https://doi.org/10.1006/ecss.2001.0854

    Article  CAS  Google Scholar 

  • Neubauer SC, Anderson IC, Neikirk BB (2005a) Nitrogen cycling and ecosystem exchanges in a Virginia tidal freshwater marsh. Estuaries 28:909–922

    Article  CAS  Google Scholar 

  • Neubauer SC, Givler K, Valentine S, Megonigal JP (2005b) Seasonal patterns and plant-mediated controls of subsurface wetland biogeochemistry. Ecology 86:3334–3344

    Article  Google Scholar 

  • Neubauer SC, Franklin RB, Berrier DJ (2013) Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon. Biogeosciences 10:8171–8183. https://doi.org/10.5194/bg-10-8171-2013

    Article  CAS  Google Scholar 

  • Niu Z, Zhang H, Wang X et al (2012) Mapping wetland changes in China between 1978 and 2008. Chin Sci Bull 57:2813–2823

    Article  Google Scholar 

  • Noe GB, Hupp CR (2005) Carbon, nitrogen, and phosphorus accumulation in floodplains of Atlantic coastal plain rivers, USA. Ecol Appl 15:1178–1190

    Article  Google Scholar 

  • Odum WE, Odum EP, Odum HT (1995) Nature’s pulsing paradigm. Estuaries 18:547–555

    Article  Google Scholar 

  • Owen CR (1995) Water budget and flow patterns in an urban wetland. J Hydrol 169:171–187

    Article  Google Scholar 

  • Page SE, Wüst RAJ, Weiss D et al (2004) A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J Quat Sci 19:625–635

    Article  Google Scholar 

  • Pärn J, Verhoeven JTA, Butterbach-Bahl K et al (2018) Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nat Commun 9:1–8. https://doi.org/10.1038/s41467-018-03540-1

    Article  CAS  Google Scholar 

  • Parton WJ, Mosier AR, Ojima DS et al (1996) Generalized model for N2 and N2O production from nitrification and denitrification. Global Biogeochem Cycles 10:401–412

    Article  CAS  Google Scholar 

  • Pendleton L, Donato DC, Murray BC et al (2012) Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7:e43542

    Article  CAS  Google Scholar 

  • Petrescu AMR, Lohila A, Tuovinen J-P et al (2015) The uncertain climate footprint of wetlands under human pressure. Proc Natl Acad Sci 112:4594–4599

    Article  Google Scholar 

  • Poffenbarger HJ, Needelman BA, Megonigal JP (2011) Salinity influence on methane emissions from tidal marshes. Wetlands 31:831–842. https://doi.org/10.1007/s13157-011-0197-0

    Article  Google Scholar 

  • Ponnamperuma FN (1984) Effects of flooding on soils. In: Kozlowski TT (ed) Flooding and plant growth. Academic, New York, pp 9–45

    Chapter  Google Scholar 

  • Porter JW, Muzila IL (1989) Aspects of swamp hydrology in the Okavango. Botsw Notes Rec 21:73–91

    Google Scholar 

  • Pronger J, Schipper LA, Hill RB et al (2014) Subsidence rates of drained agricultural peatlands in New Zealand and the relationship with time since drainage. J Environ Qual 43:1442–1449

    Article  CAS  Google Scholar 

  • Qualls RG, Richardson CJ (2008) Decomposition of litter and peat in the Everglades: the influence of P concentrations. In: Richardson CJ (ed) Everglades experiments. Springer, New York, pp 441–459

    Chapter  Google Scholar 

  • Quétier F, Regnery B, Levrel H (2014) No net loss of biodiversity or paper offsets? A critical review of the French no net loss policy. Environ Sci Pol 38:120–131

    Article  Google Scholar 

  • Rasse DP, Peresta G, Drake BG (2005) Seventeen years of elevated CO2 exposure in a Chesapeake Bay wetland: sustained but contrasting responses of plant growth and CO2 uptake. Glob Chang Biol 11:369–377

    Article  Google Scholar 

  • Reddy KR, D’Angelo EM (1997) Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands. Water Sci Technol 35:1–10

    Article  CAS  Google Scholar 

  • Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: science and applications. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Robertson AI, Bacon P, Heagney G (2001) The responses of floodplain primary production to flood frequency and timing. J Appl Ecol 38:126–136

    Article  Google Scholar 

  • Saunois M, Bousquet P, Poulter B et al (2016) The global methane budget 2000–2012. Earth Syst Sci Data 8:697–751. https://doi.org/10.5194/essd-8-697-2016

    Article  Google Scholar 

  • Scripps (2018) The Keeling Curve: a daily record of atmospheric carbon dioxide from Scripps Institution of Oceanography at UC San Diego. http://keelingcurve.ucsd.edu. Accessed 16 Feb 2018

  • Segarra KEA, Schubotz F, Samarkin VA et al (2015) High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nat Commun 6:7477

    Article  CAS  Google Scholar 

  • Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51

    Article  CAS  Google Scholar 

  • Silva JP, Phillips L, Jones W et al (2007) LIFE and Europe’s wetlands: restoring a vital ecosystem. European Commission, Luxembourg

    Google Scholar 

  • Syakila A, Kroeze C, Slomp CP (2010) Neglecting sinks for N2O at the earth’s surface: does it matter? J Integr Environ Sci 7:79–87

    Article  Google Scholar 

  • Thormann MN (2006) Diversity and function of fungi in peatlands: a carbon cycling perspective. Can J Soil Sci 86:281–293

    Article  CAS  Google Scholar 

  • Twilley RR, Chen RH, Hargis T (1992) Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air Soil Pollut 64:265–288

    Article  CAS  Google Scholar 

  • Updegraff K, Bridgham SD, Pastor J et al (2001) Response of CO2 and CH4 emissions from peatlands to warming and water table manipulation. Ecol Appl 11:311–326

    Google Scholar 

  • USGPO (United States Government Printing Office) (1990) Public papers of the presidents of the United States: George Bush. 1989: Book I: January 20th to June 30th, 1989. Office of the Federal Register, Washington, DC

    Google Scholar 

  • USGPO (United States Government Printing Office) (2008) Compensatory mitigation for losses of aquatic resources. 40 CFR, part 230, Subpart J. Office of the Federal Register, Washington, DC

    Google Scholar 

  • Valentine DL, Holland EA, Schimel DS (1994) Ecosystem and physiological controls over methane production in northern wetlands. J Geophys Res 99:1563–1571. https://doi.org/10.1029/93JD00391

    Article  CAS  Google Scholar 

  • Van Der Valk AG (2005) Water-level fluctuations in North American prairie wetlands. Hydrobiologia 539:171–188

    Article  Google Scholar 

  • Vann CD, Megonigal JP (2003) Elevated CO2 and water depth regulation of methane emissions: comparison of woody and non-woody wetland plant species. Biogeochemistry 63:117–134

    Article  CAS  Google Scholar 

  • Watson A, Nedwell DB (1998) Methane production and emission from peat: the influence of anions (sulphate, nitrate) from acid rain. Atmos Environ 32:3239–3245

    Article  CAS  Google Scholar 

  • Weston NB, Neubauer SC, Velinsky DJ, Vile MA (2014) Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry 120:163–189. https://doi.org/10.1007/s10533-014-9989-7

    Article  CAS  Google Scholar 

  • Whiting GJ, Chanton JP (1993) Primary production control of methane emission from wetlands. Nature 364:794–795. https://doi.org/10.1038/364794a0

    Article  CAS  Google Scholar 

  • Whiting GJ, Chanton JP (2001) Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B 53:521–528. https://doi.org/10.1034/j.1600-0889.2001.530501.x

    Article  Google Scholar 

  • Yansa CH (1998) Holocone paleovegetation and paleohydrology of a prairie pothole in Southern Saskatchewan, Canada. J Paleolimnol 19:429–441

    Article  Google Scholar 

  • Zhang B, Hanquin T, Ren W et al (2016) Methane emissions from global rice fields: magnitude, spatiotemporal patterns and environmental controls. Global Biogeochem Cycles 30:1246–1263. https://doi.org/10.1002/2016GB005381

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott C. Neubauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neubauer, S.C., Verhoeven, J.T.A. (2019). Wetland Effects on Global Climate: Mechanisms, Impacts, and Management Recommendations. In: An, S., Verhoeven, J. (eds) Wetlands: Ecosystem Services, Restoration and Wise Use. Ecological Studies, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-030-14861-4_3

Download citation

Publish with us

Policies and ethics