Skip to main content

Synthetic Biology: A Novel Approach for Pharmaceutically Important Compounds

  • Chapter
  • First Online:
Book cover Recent Advancement in White Biotechnology Through Fungi

Part of the book series: Fungal Biology ((FUNGBIO))

  • 1230 Accesses

Abstract

Synthetic biology is the new emerging discipline of science which combines principles of engineering with biology to redesign a living system to produce something it would not naturally produce. The living cells will alter through recombinant DNA technology to meet specific purposes. Since, fungi are themselves established cell factories in pharmaceutical industry. The versatile chemical entities secreted by these organisms have tremendous benefits. The need of the hour is to club synthetic biology and mycology to enhance gains. The great success of synthetic biology in the field of bio-production with the success story of artemisinin will likely influence the early stages of drug discovery. Next future interests are likely in the rational design of new biochemicals through genetic shuffling of biosynthetic modules in order to be compliant with large-scale production within microorganisms. However, it is also possible to anticipate technical constraints (current efficiency) as the majority of work performed in synthetic biology is in basic science rather than applied science to understand fundamental processes. Majority of projects were centered on developing new experimental and computational tools, using synthetic biology to understand how organism work or to generate minimal cells that can be counted as time constraint as it is also evident in case of semi-artiseminin where it took 10 long years. New molecular compounds as well as hosts were formed and manipulated for human benefit. Engineered systems are rapidly becoming a reality which is based on advances in our ability to edit genome and identify and optimize biosynthetic building blocks. This can help in creating a library of new pathways and novel compounds. But at the same time, ethical issues centered about the complete engineering of a new living organism or redesigning of existing species caught negative attention. It may or may not create problem but danger of evolving a new virulent strains always crossed in mind. Anyways, bolder initiatives are needed in funding for using this technology as it will be benefitted by the advancement of computational and engineering technology which in the future will move many more examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrio JL, Demain AL (2003) Fungal biotechnology. Int Microbiol 6:191–199

    Article  CAS  Google Scholar 

  • Ajikuar PK, Xiao WH, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Steohanopoulos (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–73

    Article  Google Scholar 

  • Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2:0028

    Article  Google Scholar 

  • Awan AR, Blount BA, Bell DJ, Shaw WM, McKiernan RM, Ellis T (2017) Biosynthesis of the antibiotic nonribosomal peptide penicillin in baker’s yeast. Nat Commun 8:15202

    Article  Google Scholar 

  • Barrios-Gonz AJ, Miranda RU (2010) Biotechnological production and applications of statins. Appl Microbiol Biotechnol 85:869–883

    Article  Google Scholar 

  • Ben-Ari G, Zenvirth D, Sherman A, David L, Klutstein M, Layi U, Hillel J, Simchen G (2006) Four linked genes participate in controlling sporulation efficiency in budding yeast. PLoS Genet 2:e195

    Article  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  CAS  Google Scholar 

  • Bertea CM (2005) Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. Planta Med 71:40–47

    Article  CAS  Google Scholar 

  • Bertea CM, Voster A, Verstappen FW, Mattei M, Beekwilder J, Bouwmeester HJ (2006) Isoprenoid biosynthesis in Artemisia cloning: Cloning and heterologous expression of a germocrene A synthase from a glandular trichome DNA library. Arch Biochem Biophys 448(1–2):3–12

    Google Scholar 

  • Bouwmeester HJ, Wallaart TE, Janssen MH, van Loo B, Jansen BJ, Posthumus MA, Schmidt CO, De Kraker JW, König WA, Franssen MC (1999) Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis. Phytochemistry 52:843–854

    Article  CAS  Google Scholar 

  • Breitling R, Takano E (2015) Synthetic biology advances for pharmaceutical production. Curr Opin Biotechnol 35C:46–51

    Article  Google Scholar 

  • Brown GD (2010) The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules 15:7603–7698

    Article  CAS  Google Scholar 

  • Chakravarthi BV, Das P, surendranath K, Karande AA, Jayabaskaran C (2008) Production of paclitaxel by Fusarium solani isolated from Taxus celebica. J Biosci 33:259–267

    Article  CAS  Google Scholar 

  • Covello PS, Teoh KH, Polichuk DR, Reed DW, Nowak G (2007) Functional genomics and the biosynthesis of artemisinin. Phytochemistry 68:1864–1871

    Article  CAS  Google Scholar 

  • Croteau R, Raymond E, Ketchum B, Long RM, Kaspera R (2006) Wildung. Taxol biosynthesis and molecular genetics Phytochem Rev 5:75–97

    CAS  PubMed  Google Scholar 

  • Currie JN (1917) The citric acid fermentation of Aspergillus Niger. J Biol Chem 31:15

    CAS  Google Scholar 

  • DeJong JM, Liu Y, Bollon AP, Long RM, Jennewein S, Williams D, Croteau RB (2005) Genetic engineering of Taxol biosynthetic genes in Saccharamyces cereviseae. Biotechnol Bioeng 93:221–224

    Google Scholar 

  • Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (paclitaxel) production. Metab Eng 10:201–206

    Article  CAS  Google Scholar 

  • Finkelstein E, Amichai B, Grunwald MH (1996) Griseofulvin and its uses. Int J Antimicrob Agents 6:189–194

    Article  CAS  Google Scholar 

  • Flores-Bustamante ZR, Rivera-Orduña FN, Martínez-Cárdenas A, Flores-Cotera LB (2010) Microbial paclitaxel: advances and perspectives. J Antibiot 63:460–467

    Article  CAS  Google Scholar 

  • Frasch HJ, Medema MH, Takano E, Breitling R (2013) Design based reengineering of biosynthetic gene clusters: plug-and-play-in practice. Curr Opin Biotechnol 24:1144–1150

    Article  CAS  Google Scholar 

  • Garyali S, Kumar A, Reddy MS (2013) Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew. J Microbiol Biotechnol 23:1372–1138

    Article  CAS  Google Scholar 

  • Guo BH, Wang YC, Zhou XW, Hu K, Tan F, Miao ZQ, Tang KX (2006) An endophytic Taxol-producing fungus BT2 isolated from Taxuschinensis var. mairei. Afr J Biotechnol 5:875–877

    CAS  Google Scholar 

  • Hao X (2013) Taxol producing fungi. In: Ramawat KG, Merillon JM (eds) Natural products. Springer-Verlag, pp 2797–2812

    Google Scholar 

  • Hawkins KM, Smolke CD (2008) Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nature Chem Biol 4:564–573

    Article  CAS  Google Scholar 

  • Hayden EC (2014) Synthetic biology firms shift focus. Nature 505:598

    Article  Google Scholar 

  • Helfrich EJN, Reiter S, Piel J (2014) Recent advances in genome based polyketide discovery. Curr Opin Biotechnol 29:107–115

    Article  CAS  Google Scholar 

  • Huang Q, Roessner CA, Croteau R, Scott AI (2001) Engineering Escherichia coli for the synthesis of Taxadiene, a key intermediate in the biosynthesis of Taxol. Biorg Med Chem 9:2237–2242

    Article  CAS  Google Scholar 

  • Jaitzig J, Li J, Sussmuth RD, Neubauer P (2014). Reconstituted biosynthesis nonribosomal macrolactone antibiotic valinomycin in E.coli. Acs Synth Biol 18;3(7):432–438

    Google Scholar 

  • Jennewein S, Croteau R (2001) Taxol biosynthesis: molecular genetics and biotechnological applications. Appl Microbiol Biotechnol 57:13–19

    Article  CAS  Google Scholar 

  • Jiang M, Stephanopoulos G, Pfeifer BA (2012) Downstream reactions and engineering in the microbially reconstituted pathway for Taxol. Appl Microbiol Biotechnol 94:841–849

    Article  CAS  Google Scholar 

  • Kai Z, Ping W, Zhang L, Liu J, Lin Y, Jin T, Zhou D (2008) Screening and breeding of high Taxol producing fungi by genome shuffling. Sci China C Life Sci 51:222–231

    Article  Google Scholar 

  • Kinoshita S, Udaka S, Shimino M (1957) Studies on the amino acid fermentation. Part I. Production of L-glutamic acid by various organisms. J Gen Appl Microbiol 3:193–205

    Article  CAS  Google Scholar 

  • Kitano H (2002) Computational systems biology. Nature 420:206–210

    Article  CAS  Google Scholar 

  • Komatsu M, Komatsu K, Koiwai H, Yamada Y, Kozone I, Izumikawa M, Hashimoto J, Takagi M, Omura S, Shin-Ya K (2013) Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth Biol 2013(2):384–396

    Article  Google Scholar 

  • Lee TS, Khosla C, Tang Y (2005) Engineered biosynthesis of aklanonic acid analogues. J Am Chem Soc 127:12254–12262

    Article  CAS  Google Scholar 

  • Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotech 21:796–802

    Article  CAS  Google Scholar 

  • Medema MH, Breitling R, Bovenberg R, Takano E (2011) Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms. Nat Rev Microbiol 9:131–137

    Article  CAS  Google Scholar 

  • Medema MH, Kottmann R, Yilmaz P (2015) Minimum information about a biosynthetic gene cluster. Nat Chem Biol 11(9):625–631

    Article  CAS  Google Scholar 

  • Meng H, Wang Y, Hua Q, Zhang S, Wang X (2011) In silico analysis and experimental improvement of taxadiene heterologous biosynthesis in Escherichia coli. Biotechnol Bioprocess Eng 16:205–215

    Article  CAS  Google Scholar 

  • Miao Z, Wang Y, Yu X, Guo B, Tang K (2009) New endophytic taxane production fungus from T. chinensis. Appl Biochem Microbiol 45:81–86

    Article  CAS  Google Scholar 

  • Minami H, Kim JS, Ikezawa N, Takemura T, Katayama T, Kumagai H, Sato F (2008) Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci U S A 105:7393–7398

    Article  CAS  Google Scholar 

  • Mutka SC, Carney JR, Liu Y, Kennedy J (2006) Heterologous production of epothilone C and D in Escherichia coli. Biochemistry 45:1321–1313

    Article  CAS  Google Scholar 

  • Naesby M, Nielsen SV, Nielsen CA, Green T, Tange TO, Simón E (2009) Yeast artificial chromosomes employed for random assembly of biosynthetic pathways and production of diverse compounds in Saccharomyces cerevisiae. Microb Cell Factories 8:45

    Article  Google Scholar 

  • Nielsen J, Keasling JD (2016) Engineering Cellular Metabolism Cell 164:1185–1197

    CAS  PubMed  Google Scholar 

  • Nikel PI (2014) Martı’nez-Garcı’a E, De Lorenzo V. Biotechnological domestication of pseudomonads using synthetic biology Nat Rev Microbiol 12:368–379

    CAS  PubMed  Google Scholar 

  • Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12(5):355

    Article  CAS  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532

    Article  CAS  Google Scholar 

  • Pfeifer B, Hu Z, Licari P, Khosla C (2002) Process and metabolicstrategies for improved production of Escherichia coli-derived 6-deoxyerythronolide B. Appl Environ Microbiol 68:3287–3292

    Article  CAS  Google Scholar 

  • Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, Khosla C (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291:1790–1792

    Article  CAS  Google Scholar 

  • Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9:193–207

    Article  CAS  Google Scholar 

  • Reiling KK, Yoshikuni Y, Martin VJ, Newman J, Bohlmann J, Keasling JD (2004) Mono and diterpene production in Escherichia coli. Biotechnol Bioeng 87:200–212

    Article  CAS  Google Scholar 

  • Ro DK, Yoshikuni Y, Martin VJ, Newman J, Bohlmann J, Keasling JD (2008) Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotechnol 8:83

    Article  Google Scholar 

  • Rude MA, Khosla C (2006) Production of ansamycin polyketide precursors in Escherichia coli. J Antibiot 59:464–470

    Article  CAS  Google Scholar 

  • Rugbjerg P, Naesby M, Mortensen UH, Frandsen RJN (2013) Reconstruction of the biosynthetic pathway for the core fungal polyketide scaffold rubrofusarin in Saccharomyces cerevisiae. Microb Cell Factories 12:31. https://doi.org/10.1186/1475-2859-12-31

    Article  CAS  Google Scholar 

  • Shao Z, Rao G, Li C, Abil Z, Luo Y, Zhao H (2013) Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. ACS Synth Biol 2:662–669

    Article  CAS  Google Scholar 

  • Staniek A, Bouwmeester H, Fraser PD, Kayser O, Martens S, Tissier A, van der Krol S, Wessjohann L, Warzecha H (2013) Natural products-modifying metabolite pathways in plants. Biotechnol J 8:1159–1171

    Article  CAS  Google Scholar 

  • Staniek A, Woerdenbag HJ, Kayser O (2009) Taxomycesandreanae: a presumed paclitaxel producer demystified. Planta Med 75:1561–1566

    Article  CAS  Google Scholar 

  • Stassen PM, Kallenberg CGM, Stegeman CA (2007) Use of mycophenolic acid in non-transplant renal diseases. Nephrol Dial Transpl 22:101–109

    Article  Google Scholar 

  • Sun H, Liu Z, Zhao H, Ang EL (2015) Recent advances in combinatorial biosynthesis for drug discovery. Drug Des Devel Ther 9:823–833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19

    Article  Google Scholar 

  • Teoh KH, Polichuk DR, Reed DW, Covello PS (2009) Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 87:635–642

    Article  CAS  Google Scholar 

  • Thykaer J, Nielsen J (2003) Metabolic engineering of beta-lactam production. Metab Eng 5:56–69

    Article  CAS  Google Scholar 

  • Trosset JY, Carbonell P (2015) Synthetic biology for pharmaceutical drug discovery. Drug Des Devel Ther 3(9):6285–6302

    Google Scholar 

  • vanDijken JP, Bauer J, Brambilla L, Duboc P, Francois JM, Gancedo C (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzym Microb Technol 26:706–714

    Article  CAS  Google Scholar 

  • Walker K, Croteau R (2001) Taxol biosynthetic genes. Phytochemistry 58:1–7

    Article  CAS  Google Scholar 

  • Watanabe K, Rude MA, Walsh CT, Khosla C (2003) Engineered biosynthesis of an ansamycinpolyketide precursor in Escherichia coli. Proc Natl Acad Sci U S A 100:9774–9778

    Article  CAS  Google Scholar 

  • Wei Y, Liu L, Zhou X, Lin J, Sun X, Tang K (2012) Engineering Taxol biosynthetic pathway for improving Taxol yield in Taxol-producing endophytic fungus EFY-21 (Ozonium sp.). Afr J Biotechnol 11:9094–9101

    CAS  Google Scholar 

  • Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A 109:E111–E118

    Article  CAS  Google Scholar 

  • White NJ (2008) Qinghaosu (artemisinin): the price of success. A review of the history and properties of artemisinin. Science 320:330–334

    Article  CAS  Google Scholar 

  • Wilson MC, Piel J (2013a) Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. Chem Biol 20:636–647

    Article  CAS  Google Scholar 

  • Wilson MC, Piel J (2013b) Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. Chem Boil 20:636–647

    Article  CAS  Google Scholar 

  • Wilson SA, Cummings EM, Roberts SC (2014) Multi-scale engineering of plant cell cultures for promotion of specialized metabolism. Curr Opin Biotechnol 29:163–170

    Article  CAS  Google Scholar 

  • Xiong ZQ, Yang YY, Zhao N, Wang Y (2013) Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC Microbiol. https://doi.org/10.1186/1471-2180-13-71

  • Yang Y, Zhao H, Barrero RA, Zhang B, Sun G, Wilson IW, Xie F, Walker KD (2014) Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Gen 15:69. https://doi.org/10.1186/1471-2164-15-69

    Article  CAS  Google Scholar 

  • Zhang P, Zhou PP, Yu LJ (2009) An endophytic Taxol-producing fungus from Taxus x media, Aspergillus candidus MD3. FEMS Microbiol Lett 293:155–159

    Article  CAS  Google Scholar 

  • Zhang W, Li Y, Tang Y (2008) Engineered biosynthesis of bacterial aromatic polyketides in Escherichia coli. Proc Natl Acad Sci U S A 105:20683–20688

    Article  CAS  Google Scholar 

  • Zhao L, Chang WC, Xiao Y, Liu HW, Liu P (2013) Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 82:497–530

    Article  CAS  Google Scholar 

  • Zhu F, Zhong X, Hu M, Lu L, Deng Z, Liu T (2014) In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Biotechnol Bioeng 111:1396–1405

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Molecular Biology, Biotechnology & Bioinformatics, CCS Haryana Agricultural University, Hisar; and Department of Genetics & Plant Breeding, GB Pant University of Agriculture & Technology, Pantnagar for providing the facilities and financial support, to undertake the investigations. There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rashmi, Kumar, U., Maan, P., Priyanka (2019). Synthetic Biology: A Novel Approach for Pharmaceutically Important Compounds. In: Yadav, A., Singh, S., Mishra, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-14846-1_16

Download citation

Publish with us

Policies and ethics