Skip to main content

Timbre, Sound Quality, and Sound Design

  • Chapter
  • First Online:
Timbre: Acoustics, Perception, and Cognition

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 69))

Abstract

Sound quality evaluation applies the results of timbre research to the assessment of the sound quality of manufactured products (domestic appliances, transportation, etc.). This chapter first provides an overview of one methodology. A number of acoustic descriptors reflecting perceived timbre dimensions are established and used to predict users’ preference judgements. Whereas such a methodology has proven very effective, it also has some limitations. In fact, most studies only consider the pleasantness of the sounds and often overlook other potential roles of sounds in products and interfaces. In the second part, the chapter introduces sound design. Whereas sound quality evaluation merely proposes a diagnostic of the timbre of existing products, sound design aims to create or modify the timbre of product sounds to meet specific intentions. These intentions consider the pleasantness, but also several other aspects of product sounds: functionality, identity, and ecology. All these aspects are interdependent and often closely related to the temporal and timbral characteristics of the sound. The chapter continues with a discussion of the roles and practices of sound designers and introduces a set of tools that foster communication about timbre between the different participants of a sound design process. In particular, the focus is on the necessity for these participants to share a common timbre vocabulary, and the potential impact of education about sounds is considered. Finally, an important functional aspect of product sound is discussed: how to design the timbre of sounds to support user interactions with the product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The difference between artificial and everyday sounds is defined in Sect. 9.3.5.1 (cf. earcons versus auditory icons).

References

  • American Standard Association (1960) USA acoustical terminology S1.1–160. American Standard Association

    Google Scholar 

  • Aucouturier JJ, Bigand E (2012). Mel Cepstrum & Ann Ova: The difficult dialog between MIR and music cognition. In: Proceedings of the international conference on music information retrieval (ISMIR), Porto, Portugal, 2012

    Google Scholar 

  • Bradley RA, Terry ME (1952) Rank analysis of incomplete block designs: I. the method of paired comparisons. Biometrika 39(3/4):324–345

    Article  Google Scholar 

  • Brewster S (2009) Non-speech auditory outputs. In: Sears A, Lacko JA (eds) Human-computer interaction: fundamentals. CRC Press, Boca Raton, p 213

    Google Scholar 

  • Carron M, Dubois F, Misdariis N, Susini P (2015) DĂ©finir une identitĂ© sonore de marque: mĂ©thodologie et outils (Defining a brand’s sonic identity: methods and tools). Acoustique et Techniques 81:20

    Google Scholar 

  • Carron M, Rotureau T, Dubois F, Misdariis N, Susini P (2017) Speaking about sounds: a tool for communication on sound features. J Design Res 15(2):85–109

    Article  Google Scholar 

  • Crampton-Smith G (2007) Foreword: What is interaction design. In: Moggridge B (ed) Designing interactions. The MIT Press, Cambridge, MA, pp 7–19

    Google Scholar 

  • de Soete G, Winsberg S (1993) A thurstonian pairwise choice model with univariate and multivariate spline transformations. Psychometrika 58(2):233–256

    Article  Google Scholar 

  • Dai Y, Lim TC, Karr CL (2003) Subjective response simulation of brake squeal noise applying neural network approach. Noise Control Eng J 51(1):50–59

    Article  Google Scholar 

  • Danna J, Velay JL, Paz-Villagran V, Capel A, Petroz C, Gondre C, Thoret E, Aramaki M, Ystad Y, Kronland-Martinet R (2013) Handwriting movement sonification for rehabilitation of dysgraphia. In: Proceedings of the 10th Symposium on Computer Music Multidisciplinary Research, Marseille, 2013

    Google Scholar 

  • Danna J, Fontaine M, Paz-Villagran V, Gondre C, Thoret E, Aramaki M, Kronland-Martinet R, Ystad S, Velay JL (2015) The effect of real-time auditory feedback on learning new characters. Hum Mov Sci 43:216–228

    Article  Google Scholar 

  • Ellermeier W, Mader M, Daniel P (2004) Scaling the unpleasantness of sounds according to the BTL model: ratio-scales representation and psychoacoustical analysis. Acta Acust united Ac 90:101–107

    Google Scholar 

  • Elliott TM, Hamilton LS, Theunissen FE (2013) Acoustic structure of the five perceptual dimensions of timbre in orchestral instrument tones. J Acoust Soc Am 133(1):389–404

    Article  Google Scholar 

  • Gaver WW (1986) Auditory icons: Using sound in computer interfaces. Hum Comput Interact 2(2):167–177

    Article  Google Scholar 

  • Gaver WW (1989) The sonic finder: An interface that uses auditory icons. Hum Comput Interact 4:67–94

    Article  Google Scholar 

  • Grey JM (1977) Multidimensional perceptual scaling of musical timbres. J Acoust Soc Am 61(5):1270–1277

    Article  CAS  Google Scholar 

  • Hansen H, Verhey JL, Weber R (2011) The magnitude of tonal content, a review. Acta Acust united Ac 97(3):355–363

    Article  Google Scholar 

  • Hoffmann A, Bergman P, Kropp W (2016) Perception of tyre noise: can tyre noise be differentiated and characterized by the perception of a listener outside the car? Acta Acust united Ac 102(6):992–998

    Article  Google Scholar 

  • International Telecom Union (2001–2003) Recommendation ITU-R BS.1534–1: method for the subjective assessment of intermediate quality level of coding systems. International Telecom Union, Geneva

    Google Scholar 

  • Jeon JY, You J, Chang HY (2007) Sound radiation and sound quality characteristics of refrigerator noise in real living environments. Appl Acoust 68:1118–1134

    Article  Google Scholar 

  • Jeong U-C, Kim J-S, Jeong J-E, Yang I-H, Oh J-E (2015) Development of a sound quality index for the wash cycle process of front-loading washing machines considering the impacts of individual noise sources. Appl Acoust 87:183–189

    Article  Google Scholar 

  • Krumhansl C (1989) Why is musical timbre so hard to understand? In: Nielzen S, Olsson O (eds) Structure and perception of electroacoustic sound and music. Elsevier, Amsterdam, pp 43–53

    Google Scholar 

  • Lartillot O, Toiviainen P (2007) A Matlab toolbox for musical feature extraction from audio. In: Proceedings of the 10th International Conference on Digital Audio Effects (DAFx-07), University of Bordeaux 1, France

    Google Scholar 

  • Lemaitre G, Susini P, Winsberg S, Letinturier B, McAdams S (2007) The sound quality of car horns: a psychoacoustical study of timbre. Acta Acust united Ac 93(3):457–468

    Google Scholar 

  • Lemaitre G, Houix O, Visell Y, Franinovic K, Misdariis N, Susini P (2009) Toward the design and evaluation of continuous sound in tangible interfaces: the Spinotron. Int J Hum Comput Stud 67:976–993

    Article  Google Scholar 

  • Lemaitre G, Vartanian C, Lambourg C, Boussard P (2015a) A psychoacoustical study of wind buffeting noise. Appl Acoust 95:1–12

    Article  Google Scholar 

  • Lemaitre G, Heller LM, Navolio N, Zuñiga-Peñaranda N (2015b) Priming gestures with sounds. PLoS One 10(11):e0141791

    Article  Google Scholar 

  • McAdams S, Winsberg S, Donnadieu S, Soete GD, Krimphoff J (1995) Perceptual scaling of synthesized musical timbres: common dimensions, specificities and latent subject classes. Psychol Res 58:177–192

    Article  CAS  Google Scholar 

  • Parizet E, Brocard J, Piquet B (2004) Influence of noise and vibration to comfort in diesel engine cars running at idle. Acta Acust united Ac 90:987–993

    Google Scholar 

  • Parizet E, Guyader E, Nosulenko V (2008) Analysis of car door closing sound quality. Appl Acoust 69:12–22

    Article  Google Scholar 

  • Parizet E, Ellermeier W, Robart R (2014) Auditory warnings for electric vehicles: detectability in normal-vision and visually-impaired listeners. Appl Acoust 86:50–58

    Article  Google Scholar 

  • PatĂ© A, Lavandier C, Minard A, Le Griffon I (2017) Perceived unpleasantness of aircraft flyover noise: influence of temporal parameters. Acta Acust united Ac 103(1):34–47

    Article  Google Scholar 

  • Peeters G, Giordano BL, Susini P, Misdariis N, McAdams S (2011) The timbre toolbox: extracting audio descriptors from musical signals. J Acoust Soc Am 130(5):2902–29016

    Article  Google Scholar 

  • Pietila G, Lim TC (2012) Intelligent systems approaches to product sound quality evaluations – A review. Appl Acoust 73(10):987–1002

    Article  Google Scholar 

  • Pietila G, Lim TC (2015) Sound quality preference modeling using a nested artificial neural network architecture. Noise Control Eng J 63(2):138–151

    Article  Google Scholar 

  • Rath M, Schleicher R (2008) On the relevance of auditory feedback for quality of control in a balancing task. Acta Acust united Ac 94(1):12–20

    Article  Google Scholar 

  • Sato S, You J, Jeon J (2007) Sound quality characteristics of refrigerator noise in real living environments with relation to psychoacoustical and autocorrelation function parameters. J Acoust Soc Am 122(1):314–325

    Article  Google Scholar 

  • Schaeffer P (1966) TraitĂ© des objets musicaux. Editions du Seuil, Paris

    Google Scholar 

  • Serafin S, Franinovic K, Hermann T, Lemaitre G, Rinott M, Rocchesso D (2011) Sonic interaction design. In: Hermann T, Hunt A, Neuhoff JG (eds) Sonification handbook. Logos Verlag, Berlin, pp 87–110

    Google Scholar 

  • Siedenburg K, Fujinaga I, McAdams S (2016) A comparison of approaches to timbre descriptors in music information retrieval and music psychology. J New Music Res 45(1):27–41

    Article  Google Scholar 

  • Stanton NA, Edworthy J (1999) Auditory warnings and displays: an overview. In: Stanton NA, Edworthy J (eds) Human factors in auditory warnings. Ashgate, Aldershot

    Google Scholar 

  • Susini P, McAdams S, Winsberg S (1999) A multidimensional technique for sound quality assessment. Acta Acust united Ac 85:650–656

    Google Scholar 

  • Susini P, McAdams S, Winsberg S, Perry S, Vieillard S, Rodet X (2004) Characterizing the sound quality of air-conditioning noise. Appl Acoust 65(8):763–790

    Article  Google Scholar 

  • Susini P, Lemaitre G, McAdams S (2011) Psychological measurement for sound description and evaluation. In: Berglund B, Rossi GB, Townsend JT, Pendrill LR (eds) Measurement with persons–Theory, methods and implementation area. Psychology Press, Taylor and Francis, New York/London

    Google Scholar 

  • Susini P, Houix O, Misdariis N (2014) Sound design: an applied, experimental framework to study the perception of everyday sounds. The New Soundtrack 4(2):103–121

    Article  Google Scholar 

  • Tajadura-JimĂ©nez A, Liu B, Bianchi-Berthouze N, Bevilacqua F (2014) Using sound in multi-touch interfaces to change materiality and touch behavior. In: Proceedings of the 8th Nordic Conference on Human-Computer Interaction: Fun, Fast, Foundational. Helsinki, Finland, pp 199–202

    Google Scholar 

  • Terhardt E, Stoll G, Seewann M (1982) Algorithm for extraction of pitch and pitch salience from complex tonal signals. J Acoust Soc Am 71(3):679–688

    Article  Google Scholar 

  • Thurstone LL (1927) A law of comparative judgment. Psycho Rev 34(4):273–286

    Article  Google Scholar 

  • Zwicker E, Fastl H (1990) Psychoacoustics facts and models. Springer Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Compliance with Ethics 

Compliance with Ethics 

Guillaume Lemaitre declares that he has no conflict of interest.

Patrick Susini declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lemaitre, G., Susini, P. (2019). Timbre, Sound Quality, and Sound Design. In: Siedenburg, K., Saitis, C., McAdams, S., Popper, A., Fay, R. (eds) Timbre: Acoustics, Perception, and Cognition. Springer Handbook of Auditory Research, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-030-14832-4_9

Download citation

Publish with us

Policies and ethics