Skip to main content

Examples in (\(3+1\)) GR

  • Chapter
  • First Online:
The Dirac Equation in Curved Spacetime

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 1093 Accesses

Abstract

Important early calculations in (\(3+1\)) cosmological spacetimes were carried out by Audretsch, and Schäfer [1, 2]. Several solutions in a non-cosmological context are [3,4,5,6,7,8,9,10]. In our first example we shall calculate the Fock-Ivanenkocoefficients and the resulting Dirac equations for the Schwarzschild metric (with signature (\(+2\))). The \(\gamma \) matrices are in the standard representation, however because of our signature choice, we have to multiply each of the matrices (B.8), with a factor of \(+i\). Then Eq. (B.9) change sign and Eq. (B.3) holds with \(\varepsilon =+1\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Audretsch, G. Schäfer, Quantum mechanics of electromagnetically bounded spin-\(\frac{1}{2}\) particles in an expanding universe: I. Influence of the expansion. Gen. Relativ. Gravit. 9, 243–255 (1978)

    Article  ADS  Google Scholar 

  2. J. Audretsch, G. Schäfer, Quantum mechanics of electromagnetically bounded spin-\(\frac{1}{2}\) particles in expanding universes: II. Energy spectrum of the hydrogen atom. Gen. Relativ. Gravit. 9, 489–500 (1978)

    Article  ADS  Google Scholar 

  3. S. Chandrasekhar, The solution of Dirac’s equation in Kerr geometry. Proc. R. Soc. Lond. A. 349, 571–575 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  4. D.N. Page, Dirac equation around a charged, rotating black hole. Phys. Rev. D 14, 1509–1510 (1976)

    Article  ADS  Google Scholar 

  5. V.M. Villalba, Exact solution to Dirac equation in a reducible Einstein space. J. Math Phys. 31, 1483–1486 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  6. D.-Y. Chen, Q.-Q. Jiang, X.-T. Zu, Hawking radiation of Dirac particles via tunnelling from rotating black holes in de Sitter spaces. Phys. Lett. B 665, 106–110 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  7. H. Cebeci, N. Özdemir, Dirac equation in Kerr-Taub NUT spacetime. Class. Quantum Grav. 30, 175005 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. O.V. Veko, E.M. Ovsiyuk, V.M. Red’kov, Dirac particle in the presence of a magnetic charge in de Sitter universe: exact solutions and transparency of the cosmological horizon. Nonlinear Phenom. Complex Syst. 17, 461–463 (2014)

    MathSciNet  MATH  Google Scholar 

  9. L. Anderson, C. Bär, Wave and Dirac equations manifolds, pp. 1–21. 17 April 2018, arXiv:1710.04512v2

  10. J.F. García, C. Sabín, Dirac equation in exotic space-times, pp. 1–7. 11 Nov 2018, arXiv:1811.00385v2

  11. S. Chandrasekhar, The Mathematical Theory of Black Holes, (Clarendon Press, Oxford, 1992)

    Google Scholar 

  12. M.N. Hounkonnou, J.E.B. Mendy, Exact solutions of the Dirac equation in a nonfactorizable metric. J. Math. Phys. 40, 3827–3842 (1999)

    Google Scholar 

  13. L. Parker, One-electron atom as a probe of spacetime curvature. Phys. Rev. D 22, 1922–1934 (1980)

    Google Scholar 

  14. P. Collas, D. Klein, Dirac particles in a gravitational shock wave. Class. Quantum Grav. 35, 125006 (2018), https://doi.org/10.1088/1361-6382/aac144

  15. C. Chicone, B. Mashhoon, Explicit Fermi coordinates and tidal dynamics in de Sitter and Gödel spacetimes. Phys. Rev. D 74, 064019 (2006)

    Google Scholar 

  16. D. Klein, P. Collas, General transformation formulas for Fermi-Walker coordinates. Class. Quantum Grav. 25, 145019 (2008), arXiv:0712.3838

  17. D. Klein, P. Collas, Exact Fermi coordinates for a class of space-times. J. Math. Phys. 51, 022501 (2010)

    Google Scholar 

  18. D. Klein, E. Randles, Fermi coordinates, simultaneity, and expanding space in Robertson-Walker cosmologies. Ann. Henri Poincaré 12, 303–328 (2011)

    Google Scholar 

  19. D. Bini, A. Geralico, R.T. Jantzen, Fermi coordinates in Schwarzschild spacetime: closed form expressions. Gen. Relativ. Gravit. 43, 1837–1853 (2011)

    Google Scholar 

  20. D. Klein, Maximal Fermi charts and geometry of inflationary universes. Ann Henri Poincaré (2012). https://doi.org/10.1007/s00023-012-0227-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Collas .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Collas, P., Klein, D. (2019). Examples in (\(3+1\)) GR. In: The Dirac Equation in Curved Spacetime. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-14825-6_4

Download citation

Publish with us

Policies and ethics