Skip to main content

Introduction

  • Chapter
  • First Online:
The Dirac Equation in Curved Spacetime

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 1077 Accesses

Abstract

The Dirac equation plays a fundamental role in relativistic quantum mechanics and in quantum field theory. It describes spin 1/2 particles, including electrons, neutrinos, muons, protons, neutrons, quarks, and their corresponding anti-particles. The Dirac equation has been extremely successful, even in its one-particle interpretation, in calculating the relativistic hydrogen atom spectrum, the \(g_{s}\)-factor of the electron’s magnetic moment [1], and the spin-orbit coupling for the electron. It has also been used to calculate the Coulomb scattering amplitude [2] and even to obtain meaningful results in its ultra-relativistic limit, where the mass \(m\rightarrow 0\) [3]. In fact a vast and rather recent research area has arisen, where the (\(2+1\)) ultra-relativistic \((m=0)\) Dirac equation is used to describe curved graphene and semi-metals [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.H. Ryder, Quantum Field Theory, 2nd edn. (Cambridge U. Press, New York, 1996), pp. 436–7

    Google Scholar 

  2. B. Thaller, V. Enss, Asymptotic observables and Coulomb scattering for the Dirac equation. Ann. de l’ Institut Henri Poincaré A 45, 147–171 (1986)

    Google Scholar 

  3. K. Konno, M. Kasai, General relativistic effects of gravity in quantum mechanics, a case of ultra-relativistic, spin 1/2 particles. Prog. Theor. Phys. 100, 1145–1157 (1998)

    Article  ADS  Google Scholar 

  4. A. Iorio, Curved spacetimes and curved graphene: a status report of the Weyl symmetry approach. Int. J. Mod. Phys. D 24(1530013), 1–63 (2015)

    Google Scholar 

  5. C. Itzykson, J.-B. Zuber, Quantum Field Theory (McGraw-Hill Inc., New York, 1980)

    Google Scholar 

  6. B. Thaller, The Dirac Equation (Springer, Berlin, 1992)

    Book  Google Scholar 

  7. W. Greiner, B. MĂĽller, J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer, New York, 1985)

    Book  Google Scholar 

  8. E. Schrödinger, Maxwell’s and Dirac’s equations in the expanding universe. Proc. R. Irish Acad. A. 46, 25–47 (1940)

    MathSciNet  MATH  Google Scholar 

  9. S. Chandrasekhar, The solution of Dirac’s equation in Kerr geometry. Proc. R. Soc. Lond. A. 349, 571–575 (1976)

    Google Scholar 

  10. S. Chandrasekhar, The Mathematical Theory of Black Holes (Clarendon Press, Oxford, 1992)

    Google Scholar 

  11. L. Parker, One-electron atom as a probe of spacetime curvature. Phys. Rev. D 22, 1922–1934 (1980)

    Google Scholar 

  12. L. Parker, L.O. Pimentel, Gravitational perturbation of the hydrogen spectrum. Phys. Rev. D 25, 3180–3190 (1982)

    Article  ADS  Google Scholar 

  13. J. Audretsch, G. Schäfer, Quantum mechanics of electromagnetically bounded spin-\(\frac{1}{2}\) particles in an expanding universe: I. Influence of the expansion. Gen. Relativ. Gravit. 9, 243–255 (1978)

    Google Scholar 

  14. J. Audretsch, G. Schäfer, Quantum mechanics of electromagnetically bounded spin-\(\frac{1}{2}\) particles in expanding universes: II. Energy spectrum of the hydrogen atom. Gen. Relativ. Gravit. 9, 489–500 (1978)

    Google Scholar 

  15. R.B. Mann, S.M. Morsink, A.E. Sikkema, T.G. Steele, Semiclassical gravity in (\(1+1\)) dimensions. Phys. Rev. D 43, 3948–3957 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  16. Y. Sucu, N. Ăśnal, Exact solution of the Dirac equation in \(2+1\) dimensional gravity. J. Math Phys. 48, 052503 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Collas .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Collas, P., Klein, D. (2019). Introduction. In: The Dirac Equation in Curved Spacetime. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-14825-6_1

Download citation

Publish with us

Policies and ethics