Modeling of Uncertainty with Petri Nets

  • Michal Kuchárik
  • Zoltán BaloghEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11431)


This paper deals with the idea of calculating probabilities and percentages with Petri nets. Uncertainty can be expressed with Petri nets as one place with multiple output transitions. In that case, the transition that fires are selected randomly while each transition has the same chance to fire. This paper presents the idea of assigning a weight to a transition that will be used to modify the chance at which a concurrent transition can fire. Higher weight increases the chance of firing when an uncertain situation occurs. We want to later use this to simulate university students chance to successfully complete a university course.


Petri nets Fuzzy logic Simulation Petri net tool Transitions Probability Concurrency 



This research has been supported by University Grant Agency under the contract No. VII/12/2018 and KEGA 036UKF-4/2019.


  1. 1.
    Suraj, Z., Grochowalski, P., Bandyopadhyay, S.: Flexible generalized fuzzy petri nets for rule-based systems. In: Martín-Vide, C., Mizuki, T., Vega-Rodríguez, M.A. (eds.) TPNC 2016. LNCS, vol. 10071, pp. 196–207. Springer, Cham (2016). Scholar
  2. 2.
    Bandyopadhyay, S., Suraj, Z., Grochowalski, P.: Modified generalized weighted fuzzy petri net in intuitionistic fuzzy environment. In: Flores, V., et al. (eds.) IJCRS 2016. LNCS (LNAI), vol. 9920, pp. 342–351. Springer, Cham (2016). Scholar
  3. 3.
    Zurawski, R., Zhou, M.C.: Petri nets and industrial applications: a tutorial. IEEE Trans. Industr. Electron. 41(6), 567–583 (1994). Scholar
  4. 4.
    Suraj, Z., Bandyopadhyay, S.: Generalized weighted fuzzy petri net in intuitionistic fuzzy environment. In: 2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016, pp. 2385–2392 (2016)Google Scholar
  5. 5.
    Balogh, Z., Turčáni, M.: Possibilities of modelling web-based education using IF-THEN rules and fuzzy petri nets in LMS. In: Abd Manaf, A., Zeki, A., Zamani, M., Chuprat, S., El-Qawasme, E. (eds.) ICIEIS 2011. CCIS, vol. 251, pp. 93–106. Springer, Heidelberg (2011). Scholar
  6. 6.
    Klimeš, C., Balogh, Z.: Modelovanie procesov pomocou Petriho sietí. Univerzita Konštantína Filozofa v Nitre, Nitra (2012)Google Scholar
  7. 7.
    Zhu, D., Tan, H., Yao, S.: Petri nets-based method to elicit component-interaction related safety requirements in safety-critical systems. Comput. Electr. Eng. 71, 162–172 (2018). Scholar
  8. 8.
    Ferreira, C., Canhoto Neves, L., Silva, A., de Brito, J.: Stochastic Petri net-based modelling of the durability of renderings. Autom. Constr. 87, 96–105 (2018). Scholar
  9. 9.
    Emzivat, Y., Delahaye, B., Lime, D., Roux, O.H.: Probabilistic time petri nets. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol. 9698, pp. 261–280. Springer, Cham (2016). Scholar
  10. 10.
    Katoen, J.-P., Peled, D.: Taming confusion for modeling and implementing probabilistic concurrent systems. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 411–430. Springer, Heidelberg (2013). Scholar
  11. 11.
    Kurkovsky, S., Loganantharaj, R.: Extension of petri nets for representing and reasoning with tasks with imprecise durations. Appl. Intell. 23(2), 97–108 (2005). Scholar
  12. 12.
    Stencl, M., Stastny, J.: Neural network learning algorithms comparison on numerical prediction of real data. In: 16th International Conference on Soft Computing Mendel 2010, Brno, pp. 280–285 (2010)Google Scholar
  13. 13.
    Liu, Y., Miao, H.-K., Zeng, H.-W., Ma, Y., Liu, P.: Nondeterministic probabilistic petri net — a new method to study qualitative and quantitative behaviors of system. J. Comput. Sci. Technol. 28(1), 203–216 (2013). Scholar
  14. 14.
    Balogh, Z., Magdin, M., Turcani, M., Burianova, M.: Interactivity elements implementation analysis in e-courses of professional informatics subjects. In: 2011 8th International Conference on Efficiency and Responsibility in Education, Efficiency and Responsibility in Education, pp. 5–14 (2011)Google Scholar
  15. 15.
    Tian, Y., Wang, X., Jiang, Y., You, G.: A distributed probabilistic coverage sets configuration method for high density WSN. In: Proceedings - 2017 Chinese Automation Congress, CAC 2017, pp. 2312–2316 (2017)Google Scholar
  16. 16.
    Kodamana, H., Raveendran, R., Huang, B.: Mixtures of probabilistic PCA with common structure latent bases for process monitoring. IEEE Trans. Control Syst. Technol. (2017) Scholar
  17. 17.
    Rossi, M., Vigano, G., Moneta, D., Clerici, D.: Stochastic evaluation of distribution network hosting capacity: evaluation of the benefits introduced by smart grid technology. In: 2017 AEIT International Annual Conference: Infrastructures for Energy and ICT: Opportunities for Fostering Innovation, AEIT 2017, pp. 1–6 (2017)Google Scholar
  18. 18.
    Dehban, A., Jamone, L., Kampff, A.R., Santos-Victor, J.: A deep probabilistic framework for heterogeneous self-supervised learning of affordances. In: 2017 IEEE-RAS International Conference on Humanoid Robots, pp. 476–483 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Informatics, Faculty of Natural SciencesConstantine the Philosopher University in NitraNitraSlovakia

Personalised recommendations