Skip to main content

PID Tuning with Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11431))

Abstract

In this work we will report our initial investigation of how a neural network architecture could become an efficient tool to model Proportional-Integral-Derivative controller (PID controller). It is well known that neural networks are excellent function approximators, we will then be investigating if a recursive neural networks could be suitable to model and tune PID controllers thus could assist in determining the controller’s proportional, integral, and the derivative gains. A preliminary evaluation is reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Huailin Shu, Y.P.: Decoupled temperature control system based on PID neural network. In: ACSE 05 Conference, CICC, Cairo, Egypt, 19–21 December 2005 (2005)

    Google Scholar 

  2. Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. ASME 64, 759–768 (1942)

    Google Scholar 

  3. Boubertakh, H., Tadjine, M., Glorennec, P.Y., Labiod, S.: Tuning fuzzy PD and PI controllers using reinforcement learning. ISA Trans. 49, 543–551 (2010)

    Article  Google Scholar 

  4. Carlucho, I., Paula, M.D., Villar, S.A., Acosta, G.G.: Incremental Q-learning strategy for adaptive pid control of mobile robots. Expert Syst. Appl. 80, 183–199 (2017)

    Article  Google Scholar 

  5. Zhang, J., Wang, N., Wang, S.: A developed method of tuning PID controllers with fuzzy rules for integrating processes. In: Proceeding of the 2004 American Control Conference Boston, Massachusetts, 30 June -2 July 2 (2004)

    Google Scholar 

  6. Kim, J.S., Kim, J.H., Park, J.M., Park, S.M., Choe, W.Y., Heo, H.: Auto tuning PID controller based on improved genetic algorithm for reverse osmosis plant. Eng. Technol. Int. J. Comput. Electr. Autom. Control Inf. Eng. 211 (2008)

    Google Scholar 

  7. Salem, A., Hassan, M.A.M., Ammar, M.E.: Tuning PID controllers using artificial intelligence techniques applied to DC-motor and AVR system. Asian J. Eng. Technol. 22 (2014). ISSN 2321–2462

    Google Scholar 

  8. Muderrisoglu, K., Arisoy, D.O., Ahan, A.O., Akdogan, E.: PID parameters prediction using neural network for a linear quarter car suspension control. Int. J. Intell. Syst. Appl. Eng. (2014)

    Google Scholar 

  9. Scott, G.M., Shavlik, J.W., Ray, W.H.: Refining PID controllers using neural networks. National Science Foundation Graduate Fellowship, pp. 555–562 (1994)

    Google Scholar 

  10. Shen, J.C.: Fuzzy neural networks for tuning PID controller for plants with underdamped responses. IEEE Trans. Fuzzy Syst. 9(2), 333–342 (2001)

    Article  Google Scholar 

  11. Killingsworth, N., Krstic, M.: PID tuning using extremum seeking: online, model-free performance optimization. IEEE Control Syst. 26, 70–79 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Papoutsidakis, M., Piromalis, D., Neri, F., Camilleri, M.: Intelligent algorithms based on data processing for modular robotic vehicles control. WSEAS Trans. Syst. 13, 242–251 (2014)

    Google Scholar 

  13. Neri, F.: PIRR: a methodology for distributed network management in mobile networks. WSEAS Trans. Inf. Sci. Appl. 5, 306–311 (2008)

    Google Scholar 

  14. Draper, C., Li, Y.: Principles of optimalizing control systems and an application to the internal combustion engine. Optimal and Selfoptimizing Control (1951)

    Google Scholar 

  15. Rumelhart, D.E., Widrow, B., Lehr, M.A.: The basic ideas in neural networks. Commun. ACM 37, 87–92 (1994)

    Article  Google Scholar 

  16. Neri, F.: Learning and predicting financial time series by combining natural computation and agent simulation. In: Di Chio, C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6625, pp. 111–119. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20520-0_12

    Chapter  Google Scholar 

  17. Neri, F.: A comparative study of a financial agent based simulator across learning scenarios. In: Cao, L., Bazzan, A.L.C., Symeonidis, A.L., Gorodetsky, V.I., Weiss, G., Yu, P.S. (eds.) ADMI 2011. LNCS (LNAI), vol. 7103, pp. 86–97. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27609-5_7

    Chapter  Google Scholar 

  18. Staines, A., Neri, F.: A matrix transition oriented net for modeling distributed complex computer and communication systems. WSEAS Trans. Syst. 13, 12–22 (2014)

    Google Scholar 

  19. Neri, F.: Agent-based modeling under partial and full knowledge learning settings to simulate financial markets. AI Commun. 25, 295–304 (2012)

    Google Scholar 

  20. Neri, F.: Case study on modeling the silver and nasdaq financial time series with simulated annealing. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST 2018. AISC, vol. 746, pp. 755–763. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77712-2_71

    Chapter  Google Scholar 

  21. Neri, F.: Combining machine learning and agent based modeling for gold price prediction. In Cagnoni, S. (ed.) WIVACE 2018, Workshop on Artificial Life and Evolutionary Computation, vol. tbd. Springer (2018, in press)

    Google Scholar 

  22. Neri, F.: Can agent based models capture the complexity of financial market behavior. In: 42nd Annual Meeting of the AMASES Association for Mathematics Applied to Social and Economic Sciences, Napoli. University of Naples and Parthenope University Press (2018, in press)

    Google Scholar 

  23. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.: A classification of hyper-heuristics approaches. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research and Management Science, vol. 146, pp. 449–468. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-4419-1665-5_15. In press

    Chapter  Google Scholar 

  24. Camilleri, M., Neri, F., Papoutsidakis, M.: An algorithmic approach to parameter selection in machine learning using meta-optimization techniques. WSEAS Trans. Syst. 13, 203–212 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Neri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marino, A., Neri, F. (2019). PID Tuning with Neural Networks. In: Nguyen, N., Gaol, F., Hong, TP., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2019. Lecture Notes in Computer Science(), vol 11431. Springer, Cham. https://doi.org/10.1007/978-3-030-14799-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14799-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14798-3

  • Online ISBN: 978-3-030-14799-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics