Advertisement

Feature Extraction Analysis for Emotion Recognition from ICEEMD of Multimodal Physiological Signals

  • J. F. Gómez-LaraEmail author
  • O. A. Ordóñez-Bolaños
  • M. A. Becerra
  • A. E. Castro-Ospina
  • C. Mejía-Arboleda
  • C. Duque-Mejía
  • J. Rodriguez
  • Javier Revelo-Fuelagán
  • Diego H. Peluffo-Ordóñez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11431)

Abstract

The emotions identification is a very complex task due to depending on multiple variables individually and as a group. They are evaluated by different criteria such as arousal, valence, and dominance mainly. Several investigations have been focused on building prediction systems. Nevertheless, this is still an open research field. The main objective of this paper is the analysis of the Improved Complementary Ensemble Empirical Mode Decomposition (ICEEMD) for feature extraction from physiological signals for emotions prediction. Physiological signals and metadata of the DEAP database were used. First, the signals were preprocessed, then three decompositions were carried out using ICEEMD, Discrete Wavelet Transform (DWT), and Maximal overlap DWT. Feature extraction was carried out using Hermite coefficients, and multiple statistic measures from IMFs, coefficients DWT, and MODWT, and signals. Then, Relief F selection algorithms were applied to reducing the dimensionality of the feature space. Finally, Linear Discriminant Classifier (LDC) and K-NN cascade, and Random Forest classifiers were tested. The different decomposition techniques were compared, and the relevant signals and measures were established. The results demonstrated the capability of ICEEMD decomposition for emotions analysis from physiological signals.

Keywords

Emotion recognition Improved complementary ensemble empirical mode decomposition Multimodal Physiological signals Signal processing 

Notes

Acknowledgment

The authors acknowledge to the research project “Desarrollo de una metodología de visualización interactiva y eficaz de información en Big Data” supported by Agreement No. 180 November 1st, 2016 by VIPRI from Universidad de Nariño.

References

  1. 1.
    Abadi, M.K., Subramanian, R., Kia, S.M., Avesani, P., Patras, I., Sebe, N.: DECAF: MEG-based multimodal database for decoding affective physiological responses. IEEE Trans. Affect. Comput. 6(3), 209–222 (2015).  https://doi.org/10.1109/TAFFC.2015.2392932CrossRefGoogle Scholar
  2. 2.
    Akinci, H.M., Yesil, E.: Emotion modeling using fuzzy cognitive maps. In: 2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI), pp. 49–55, November 2013.  https://doi.org/10.1109/CINTI.2013.6705252
  3. 3.
    Al Mejrad, A.: Human emotions detection using brain wave signals: a challenging. Eur. J. Sci. Res. 44(4), 640–659 (2010). https://www.scopus.com/inward/record.uri?eid=2-s2.0-79959391148&partnerID=40&md5=c98a158a7d5ed99b578c8d64210cf5b6, cited By 38Google Scholar
  4. 4.
    Alickovic, E., Kevric, J., Subasi, A.: Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomed. Sig. Process. Control 39, 94–102 (2018).  https://doi.org/10.1016/j.bspc.2017.07.022CrossRefGoogle Scholar
  5. 5.
    Atkinson, J., Campos, D.: Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers. Expert Syst. Appl. 47, 35–41 (2016).  https://doi.org/10.1016/j.eswa.2015.10.049. http://www.sciencedirect.com/science/article/pii/S0957417415007538CrossRefGoogle Scholar
  6. 6.
    Bajaj, V., Pachori, R.B.: Human emotion classification from EEG signals using multiwavelet transform. In: 2014 International Conference on Medical Biometrics, pp. 125–130, May 2014.  https://doi.org/10.1109/ICMB.2014.29
  7. 7.
    Barzegar, R., Asghari Moghaddam, A., Adamowski, J., Ozga-Zielinski, B.: Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model. Stoch. Env. Res. Risk Assess. 32(3), 799–813 (2018).  https://doi.org/10.1007/s00477-017-1394-zCrossRefGoogle Scholar
  8. 8.
    Basu, S., et al.: Emotion recognition based on physiological signals using valence-arousal model. In: 2015 Third International Conference on Image Information Processing (ICIIP), pp. 50–55. IEEE (2015)Google Scholar
  9. 9.
    Becerra, M.A., et al.: Odor pleasantness classification from electroencephalographic signals and emotional states. In: Serrano C., J.E., Martínez-Santos, J.C. (eds.) CCC 2018. CCIS, vol. 885, pp. 128–138. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98998-3_10CrossRefGoogle Scholar
  10. 10.
    Becerra, M.A., et al.: Electroencephalographic signals and emotional states for tactile pleasantness classification. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds.) IWAIPR 2018. LNCS, vol. 11047, pp. 309–316. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01132-1_35CrossRefGoogle Scholar
  11. 11.
    Bong, S.Z., Wan, K., Murugappan, M., Ibrahim, N.M., Rajamanickam, Y., Mohamad, K.: Implementation of wavelet packet transform and non linear analysis for emotion classification in stroke patient using brain signals. Biomed. Sig. Process. Control 36, 102–112 (2017).  https://doi.org/10.1016/j.bspc.2017.03.016. http://www.sciencedirect.com/science/article/pii/S1746809417300654CrossRefGoogle Scholar
  12. 12.
    Colominas, M.A., Schlotthauer, G., Torres, M.E.: Improved complete ensemble EMD: a suitable tool for biomedical signal processing. Biomed. Sig. Process. Control 14(1), 19–29 (2014).  https://doi.org/10.1016/j.bspc.2014.06.009. http://dx.doi.org/10.1016/j.bspc.2014.06.009CrossRefGoogle Scholar
  13. 13.
    Fontaine, J.R., Scherer, K.R., Roesch, E.B., Ellsworth, P.C.: The world of emotions is not two-dimensional. Psychol. Sci. 18(12), 1050–1057 (2007).  https://doi.org/10.1111/j.1467-9280.2007.02024.x. pMID: 18031411CrossRefGoogle Scholar
  14. 14.
    Gaur, P., Pachori, R.B., Wang, H., Prasad, G.: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry. Expert Syst. Appl. 95, 201–211 (2018).  https://doi.org/10.1016/j.eswa.2017.11.007CrossRefGoogle Scholar
  15. 15.
    Greco, A., Valenza, G., Lanata, A., Rota, G., Scilingo, E.P.: Electrodermal activity in bipolar patients during affective elicitation. IEEE J. Biomed. Health Inform. 18(6), 1865–1873 (2014).  https://doi.org/10.1109/JBHI.2014.2300940CrossRefGoogle Scholar
  16. 16.
    Ha, T.M., Bunke, H.: Off-line, handwritten numeral recognition by perturbation method. IEEE Trans. Pattern Anal. Mach. Intell. 5, 535–539 (1997)CrossRefGoogle Scholar
  17. 17.
    Jia, J., Goparaju, B., Song, J., Zhang, R., Westover, M.B.: Automated identification of epileptic seizures in EEG signals based on phase space representation and statistical features in the CEEMD domain. Biomed. Sig. Process. Control 38, 148–157 (2017).  https://doi.org/10.1016/j.bspc.2017.05.015. http://linkinghub.elsevier.com/retrieve/pii/S1746809417301039CrossRefGoogle Scholar
  18. 18.
    Jie, X., Cao, R., Li, L.: Emotion recognition based on the sample entropy of EEG. Bio-med. Mater. Eng. 24(1), 1185–1192 (2014)Google Scholar
  19. 19.
    Khezri, M., Firoozabadi, M., Sharafat, A.R.: Reliable emotion recognition system based on dynamic adaptive fusion of forehead biopotentials and physiological signals. Comput. Methods Programs Biomed. 122(2), 149–164 (2015).  https://doi.org/10.1016/j.cmpb.2015.07.006. http://www.sciencedirect.com/science/article/pii/S0169260715001959CrossRefGoogle Scholar
  20. 20.
    Koelstra, S., et al.: DEAP: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012).  https://doi.org/10.1109/T-AFFC.2011.15CrossRefGoogle Scholar
  21. 21.
    Li, K., Li, X., Zhang, Y., Zhang, A.: Affective state recognition from EEG with deep belief networks. In: 2013 IEEE International Conference on Bioinformatics and Biomedicine, pp. 305–310, December 2013.  https://doi.org/10.1109/BIBM.2013.6732507
  22. 22.
    Mohammadi, Z., Frounchi, J., Amiri, M.: Wavelet-based emotion recognition system using EEG signal. Neural Comput. Appl. 28(8), 1985–1990 (2016).  https://doi.org/10.1007/s00521-015-2149-8CrossRefGoogle Scholar
  23. 23.
    Nicolaou, M.A., Gunes, H., Pantic, M.: Continuous prediction of spontaneous affect from multiple cues and modalities in valence-arousal space. IEEE Trans. Affect. Comput. 2(2), 92–105 (2011).  https://doi.org/10.1109/T-AFFC.2011.9CrossRefGoogle Scholar
  24. 24.
    Posner, J., Russell, J.A., Peterson, B.S.: The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 17(3), 715–734 (2005).  https://doi.org/10.1017/S0954579405050340CrossRefGoogle Scholar
  25. 25.
    Rajesh, K.N., Dhuli, R.: Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier. Biomed. Sig. Process. Control 41, 242–254 (2018).  https://doi.org/10.1016/j.bspc.2017.12.004. http://dx.doi.org/10.1016/j.bspc.2017.12.004CrossRefGoogle Scholar
  26. 26.
    Rozgić, V., Vitaladevuni, S.N., Prasad, R.: Robust EEG emotion classification using segment level decision fusion. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1286–1290, May 2013.  https://doi.org/10.1109/ICASSP.2013.6637858
  27. 27.
    Thejaswini, T., Ravikumar, K.M.: Detection of human emotions using features based on the mulitwavelet transform of EEG signals. Brain-Comput. Interfaces: Curr. Trends Appl. 119–122 (2018). https://books.google.com/books?id=2LUjBQAAQBAJ&pgis=1
  28. 28.
    Shu, L., et al.: A review of emotion recognition using physiological signals. Sensors 18(7), 2074 (2018).  https://doi.org/10.3390/s18072074CrossRefGoogle Scholar
  29. 29.
    Soleymani, M., Asghari-Esfeden, S., Fu, Y., Pantic, M.: Analysis of EEG signals and facial expressions for continuous emotion detection. IEEE Trans. Affect. Comput. 7(1), 17–28 (2016).  https://doi.org/10.1109/TAFFC.2015.2436926CrossRefGoogle Scholar
  30. 30.
    Thejaswini, S., Ravi Kumar, K.M., Rupali, S., Abijith, V.: EEG based emotion recognition using wavelets and neural networks classifier of emotion. J. Pers. Soc. Psychol. (2017).  https://doi.org/10.1007/978-981-10-6698-6-10
  31. 31.
    Verma, G.K., Tiwary, U.S.: Multimodal fusion framework: a multiresolution approach for emotion classification and recognition from physiological signals. NeuroImage 102, 162–172 (2014).  https://doi.org/10.1016/j.neuroimage.2013.11.007. http://www.sciencedirect.com/science/article/pii/S1053811913010999, multimodal Data FusionCrossRefGoogle Scholar
  32. 32.
    Vijayan, A.E., Sen, D., Sudheer, A.P.: EEG-based emotion recognition using statistical measures and auto-regressive modeling. In: 2015 IEEE International Conference on Computational Intelligence Communication Technology, pp. 587–591, February 2015.  https://doi.org/10.1109/CICT.2015.24
  33. 33.
    Yang, B., Zhang, T., Zhang, Y., Liu, W., Wang, J., Duan, K.: Removal of electrooculogram artifacts from electroencephalogram using canonical correlation analysis with ensemble empirical mode decomposition. Cogn. Comput. 9(5), 626–633 (2017).  https://doi.org/10.1007/s12559-017-9478-0CrossRefGoogle Scholar
  34. 34.
    Zhang, Z., et al.: Modulation signal recognition based on information entropy and ensemble learning. Entropy 20(3), 198 (2018)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zheng, W.L., Guo, H.T., Lu, B.L.: Revealing critical channels and frequency bands for emotion recognition from EEG with deep belief network. In: 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 154–157, April 2015.  https://doi.org/10.1109/NER.2015.7146583
  36. 36.
    Zhuang, X., Rozgić, V., Crystal, M.: Compact unsupervised EEG response representation for emotion recognition. In: IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 736–739, June 2014.  https://doi.org/10.1109/BHI.2014.6864469

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • J. F. Gómez-Lara
    • 1
    Email author
  • O. A. Ordóñez-Bolaños
    • 1
  • M. A. Becerra
    • 2
  • A. E. Castro-Ospina
    • 3
  • C. Mejía-Arboleda
    • 3
  • C. Duque-Mejía
    • 3
  • J. Rodriguez
    • 4
  • Javier Revelo-Fuelagán
    • 1
  • Diego H. Peluffo-Ordóñez
    • 5
  1. 1.Universidad de NariñoSan Juan de PastoColombia
  2. 2.Institución Universitaria Pascual BravoMedellínColombia
  3. 3.Instituto Tecnológico MetropolitanoMedellínColombia
  4. 4.Universidad AutónomaManizalesColombia
  5. 5.SDAS Research GroupYachay TechUrcuquíEcuador

Personalised recommendations