Adaptation and Recovery Stages for Case-Based Reasoning Systems Using Bayesian Estimation and Density Estimation with Nearest Neighbors

  • D. Bastidas TorresEmail author
  • C. Piñeros Rodriguez
  • Diego H. Peluffo-Ordóñez
  • X. Blanco Valencia
  • Javier Revelo-Fuelagán
  • M. A. Becerra
  • A. E. Castro-Ospina
  • Leandro L. Lorente-Leyva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11431)


When searching for better solutions that improve the medical diagnosis accuracy, Case-Based reasoning systems (CBR) arise as a good option. This article seeks to improve these systems through the use of parametric and non-parametric probability estimation methods, particularly, at their recovery and adaptation stages. To this end, a set of experiments are conducted with two essentially different, medical databases (Cardiotocography and Cleveland databases), in order to find good parametric and non-parametric estimators. The results are remarkable as a high accuracy rate is achieved when using explored approaches: Naive Bayes and Nearest Neighbors (K-NN) estimators. In addition, a decrease on the involved processing time is reached, which suggests that proposed estimators incorporated into the recovery and adaptation stage becomes suitable for CBR systems, especially when dealing with support for medical diagnosis applications.


Case-based reasoning Classification Probability Bayes Parametric 



The authors acknowledge to the research project ‘Desarrollo de una metodología de visualización interactiva y eficaz de información en Big Data’ supported by Agreement No. 180 November 1st, 2016 by VIPRI from Universidad de Nariño. Also, authors thank the valuable support given by the SDAS-Smart Data Analysis Systems Research Group (


  1. 1.
    Maher, M.L., Balachandran, M.B., Zhang, D.M.: Case-Based Reasoning in Design. Psychology Press, Abingdon (2014)Google Scholar
  2. 2.
    Pal, S.K., Shiu, S.C.: Foundations of Soft Case-Based Reasoning, vol. 8. Wiley, Hoboken (2004)Google Scholar
  3. 3.
    Craw, S., Aamodt, A.: Case based reasoning as a model for cognitive artificial intelligence. In: Cox, M.T., Funk, P., Begum, S. (eds.) ICCBR 2018. LNCS, vol. 11156, pp. 62–77. Springer, Cham (2018). Scholar
  4. 4.
    Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7(1), 39–59 (1994)Google Scholar
  5. 5.
    Leake, D.B.: CBR in context: the present and future. In: Case-Based Reasoning, Experiences, Lessons & Future Directions, pp. 1–30 (1996)Google Scholar
  6. 6.
    Blanco Valencia, X., Bastidas Torres, D., Piñeros Rodriguez, C., Peluffo-Ordóñez, D.H., Becerra, M.A., Castro-Ospina, A.E.: Case-based reasoning systems for medical applications with improved adaptation and recovery stages. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2018. LNCS, vol. 10813, pp. 26–38. Springer, Cham (2018). Scholar
  7. 7.
    Kolodner, J.L.: Maintaining organization in a dynamic long-term memory. Cogn. Sci. 7(4), 243–280 (1983)Google Scholar
  8. 8.
    Ting, S., Kwok, S.K., Tsang, A.H., Lee, W.: A hybrid knowledge-based approach to supporting the medical prescription for general practitioners: real case in a Hong Kong medical center. Knowl.-Based Syst. 24(3), 444–456 (2011)Google Scholar
  9. 9.
    Fan, C.Y., Chang, P.C., Lin, J.J., Hsieh, J.: A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification. Appl. Soft Comput. 11(1), 632–644 (2011)Google Scholar
  10. 10.
    Kitchenham, B.A.: Systematic review in software engineering: where we are and where we should be going. In: Proceedings of the 2nd International Workshop on Evidential Assessment of Software Technologies, pp. 1–2. ACM (2012)Google Scholar
  11. 11.
    Montani, S.: How to use contextual knowledge in medical case-based reasoning systems: a survey on very recent trends. Artif. Intell. Med. 51(2), 125–131 (2011)Google Scholar
  12. 12.
    Lichman, M.: UCI machine learning repository (2013)Google Scholar
  13. 13.
    Gama, J.: A linear-Bayes classifier. In: Monard, M.C., Sichman, J.S. (eds.) IBERAMIA/SBIA 2000. LNCS, vol. 1952, pp. 269–279. Springer, Heidelberg (2000). Scholar
  14. 14.
    Srivastava, S., Gupta, M.R., Frigyik, B.A.: Bayesian quadratic discriminant analysis. J. Mach. Learn. Res. 8(Jun), 1277–1305 (2007)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Suresh, K., Dillibabu, R.: Designing a machine learning based software risk assessment model using Naïve Bayes algorithm (2018)Google Scholar
  16. 16.
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Routledge, Abingdon (2018)Google Scholar
  17. 17.
    Denoeux, T., Kanjanatarakul, O., Sriboonchitta, S.: EK-NNclus: a clustering procedure based on the evidential K-nearest neighbor rule. Knowl.-Based Syst. 88, 57–69 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • D. Bastidas Torres
    • 1
    • 2
    Email author
  • C. Piñeros Rodriguez
    • 3
  • Diego H. Peluffo-Ordóñez
    • 2
    • 6
  • X. Blanco Valencia
    • 2
  • Javier Revelo-Fuelagán
    • 3
  • M. A. Becerra
    • 4
  • A. E. Castro-Ospina
    • 4
  • Leandro L. Lorente-Leyva
    • 5
  1. 1.Pontificia Universidad JaverianaCaliColombia
  2. 2.SDAS Research GroupYachay TechUrcuquíEcuador
  3. 3.Universidad de NariñoPastoColombia
  4. 4.Instituto Tecnológico MetropolitanoMedellínColombia
  5. 5.Universidad Técnica del NorteIbarraEcuador
  6. 6.Coorporación Universitaria Autónoma de NariñoPastoColombia

Personalised recommendations