Skip to main content

Functional Implications of Dynamic DNA Methylation for the Developing, Aging and Diseased Brain

  • Chapter
  • First Online:
The DNA, RNA, and Histone Methylomes

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Epigenetic mechanisms of gene regulation as the interface between the genome and environment, control diverse processes in development, aging and disease. As proposed by increasing body of evidence, defects in epigenetic remodeling during brain development, function and aging seem central to diverse aspects of the pathophysiology of psychiatric and neurological diseases.

The discovery of active ways of DNA demethylation has paved the way to reconsider the functional implications of DNA methylation in the brain, where dynamic reconfiguration of the DNA methylation landscape has been observed during development and aging. High-throughput studies profiling global DNA methylation and transcriptional changes suggest that DNA methylation-dependent gene regulation is crucially involved in regulating neuronal differentiation and maturation processes, as well as in age-related declines of neuronal function. As DNA methylation and DNA methyltransferases (DNMTs) also influences the histone code, the crosstalk of these two mechanisms of epigenetic gene regulation in neuronal development and function has been started to be investigated. Here, an overview is provided about the currently known functional implications dynamic DNA methylation and the crosstalk with histone modifications have in neuronal development and aging, as well as in associated diseases. Further, we discuss the integration and applicability of animal models as tool to gain insights in human brain aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agirman G, Broix L, Nguyen L (2017) Cerebral cortex development: an outside-in perspective. FEBS Lett 591:3978–3992

    Article  CAS  PubMed  Google Scholar 

  • Akbarian S, Beeri MS, Haroutunian V (2013) Epigenetic determinants of healthy and diseased brain aging and cognition. JAMA Neurol 70:711–718

    Article  PubMed  Google Scholar 

  • Banuelos C, Beas BS, McQuail JA et al (2014) Prefrontal cortical GABAergic dysfunction contributes to age-related working memory impairment. J Neurosci 34:3457–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barter JD, Foster TC (2018) Aging in the brain: new roles of epigenetics in cognitive decline. Neuroscience 24:516–525

    Article  CAS  Google Scholar 

  • Benes FM, McSparren J, Bird ED et al (1991) Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 48:996–1001

    Article  CAS  PubMed  Google Scholar 

  • Berkyurek AC, Suetake I, Arita K et al (2014) The DNA methyltransferase Dnmt1 directly interacts with the SET and RING finger-associated (SRA) domain of the multifunctional protein Uhrf1 to facilitate accession of the catalytic center to hemi-methylated DNA. J Biol Chem 289:379–386

    Article  CAS  PubMed  Google Scholar 

  • Bilkei-Gorzo A (2014) Genetic mouse models of brain ageing and Alzheimer’s disease. Pharmacol Ther 142:244–257

    Article  CAS  PubMed  Google Scholar 

  • Bu J, Sathyendra V, Nagykery N et al (2003) Age-related changes in calbindin-D28k, calretinin, and parvalbumin-immunoreactive neurons in the human cerebral cortex. Exp Neurol 182:220–231

    Article  CAS  PubMed  Google Scholar 

  • Burianova J, Ouda L, Profant O et al (2009) Age-related changes in GAD levels in the central auditory system of the rat. Exp Gerontol 44:161–169

    Article  CAS  PubMed  Google Scholar 

  • Butt SJ, Fuccillo M, Nery S et al (2005) The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 48:591–604

    Article  CAS  PubMed  Google Scholar 

  • Butt SJ, Sousa VH, Fuccillo MV et al (2008) The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes. Neuron 59:722–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canas PM, Duarte JM, Rodrigues RJ et al (2009) Modification upon aging of the density of presynaptic modulation systems in the hippocampus. Neurobiol Aging 30:1877–1884

    Article  CAS  PubMed  Google Scholar 

  • Catts VS, Weickert CS (2012) Gene expression analysis implicates a death receptor pathway in schizophrenia pathology. PLoS One 7:e35511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha CI, Lee YI, Lee EY et al (1997) Age-related changes of VIP, NPY and somatostatin-immunoreactive neurons in the cerebral cortex of aged rats. Brain Res 753:235–244

    Article  CAS  PubMed  Google Scholar 

  • Chen BJ, Ueberham U, Mills JD et al (2017) RNA sequencing reveals pronounced changes in the noncoding transcriptome of aging synaptosomes. Neurobiol Aging 56:67–77

    Article  CAS  PubMed  Google Scholar 

  • Cheng CH, Lin YY (2013) Aging-related decline in somatosensory inhibition of the human cerebral cortex. Exp Brain Res 226:145–152

    Article  CAS  PubMed  Google Scholar 

  • Chestnut BA, Chang Q, Price A et al (2011) Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 31:16619–16636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chittock EC, Latwiel S, Miller TC et al (2017) Molecular architecture of polycomb repressive complexes. Biochem Soc Trans 45(1):193–205. https://doi.org/10.1042/bst20160173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chodavarapu RK, Feng S, Bernatavichute YV et al (2010) Relationship between nucleosome positioning and DNA methylation. Nature 466(7304):388–392. https://doi.org/10.1038/nature09147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Civiero L, Cirnaru MD, Beilina A et al (2015) Leucine-rich repeat kinase 2 interacts with p21-activated kinase 6 to control neurite complexity in mammalian brain. J Neurochem 135(6):1242–1256. https://doi.org/10.1111/jnc.13369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark BC, Taylor JL (2011) Age-related changes in motor cortical properties and voluntary activation of skeletal muscle. Curr Aging Sci 4(3):192–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Clements EG, Mohammad HP, Leadem BR et al (2012) DNMT1 modulates gene expression without its catalytic activity partially through its interactions with histone-modifying enzymes. Nucleic Acids Res 40:4334–4346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clermont PL, Parolia A, Liu HH et al (2016) DNA methylation at enhancer regions: novel avenues for epigenetic biomarker development. Front Biosci (Landmark edition) 21:430–446

    Article  CAS  Google Scholar 

  • Coppieters N, Dieriks BV, Lill C et al (2014) Global changes in DNA methylation and hydroxymethylation in Alzheimer’s disease human brain. Neurobiol Aging 35:1334–1344

    Article  CAS  PubMed  Google Scholar 

  • Corbin JG, Butt SJ (2011) Developmental mechanisms for the generation of telencephalic interneurons. Dev Neurobiol 71:710–732

    Article  CAS  PubMed  Google Scholar 

  • Costa E, Dong E, Grayson DR, Guidotti A, Ruzicka W, Veldic M (2007) Reviewing the role of DNA (cytosine-5) methyltransferase overexpression in the cortical GABAergic dysfunction associated with psychosis vulnerability. Epigenetics 2(1):29–36

    Article  PubMed  Google Scholar 

  • De Marco Garcia NV, Karayannis T, Fishell G (2011) Neuronal activity is required for the development of specific cortical interneuron subtypes. Nature 472:351–355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Druga R (2009) Neocortical inhibitory system. Folia Biol 55(6):201–217

    CAS  Google Scholar 

  • Du J, Johnson LM, Jacobsen SE et al (2015) DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol 16:519–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan G, Beard C, Chen RZ et al (2001) DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J Neurosci 21:788–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan G, Martinowich K, Chin MH et al (2005) DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development (Cambridge, England) 132:3345–3356

    Article  CAS  Google Scholar 

  • Feng J, Chang H, Li E et al (2005) Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res 79:734–746

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Zhou Y, Campbell SL et al (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13:423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flandin P, Kimura S, Rubenstein JL (2010) The progenitor zone of the ventral medial ganglionic eminence requires Nkx2-1 to generate most of the globus pallidus but few neocortical interneurons. J Neurosci 30:2812–2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flood DG, Coleman PD (1988) Neuron numbers and sizes in aging brain: comparisons of human, monkey, and rodent data. Neurobiol Aging 9:453–463

    Article  CAS  PubMed  Google Scholar 

  • Franco SJ, Muller U (2013) Shaping our minds: stem and progenitor cell diversity in the mammalian neocortex. Neuron 77:19–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelman DM, Martini FJ, Nobrega-Pereira S et al (2009) The embryonic preoptic area is a novel source of cortical GABAergic interneurons. J Neurosci 29:9380–9389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelman D, Griveau A, Dehorter N et al (2011) A wide diversity of cortical GABAergic interneurons derives from the embryonic preoptic area. J Neurosci 31:16570–16580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gidon A, Segev I (2012) Principles governing the operation of synaptic inhibition in dendrites. Neuron 75:330–341

    Article  CAS  PubMed  Google Scholar 

  • Guidotti A, Auta J, Chen Y et al (2011) Epigenetic GABAergic targets in schizophrenia and bipolar disorder. Neuropharmacology 60:1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Guo JU, Ma DK, Mo H et al (2011) Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 14:1345–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JU, Su Y, Shin JH et al (2014) Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci 17:215–222

    Article  CAS  PubMed  Google Scholar 

  • Haberman RP, Quigley CK, Gallagher M (2012) Characterization of CpG island DNA methylation of impairment-related genes in a rat model of cognitive aging. Epigenetics 7:1008–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halder R, Hennion M, Vidal RO et al (2016) DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat Neurosci 19:102–110

    Article  CAS  PubMed  Google Scholar 

  • Hansen DV, Lui JH, Parker PR et al (2010) Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464:554–561

    Article  CAS  PubMed  Google Scholar 

  • Hashimshony T, Zhang J, Keshet I et al (2003) The role of DNA methylation in setting up chromatin structure during development. Nat Genet 34:187–192

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Yamashita A, Shimizu K (1997) Somatostatin and brain-derived neurotrophic factor mRNA expression in the primate brain: decreased levels of mRNAs during aging. Brain Res 749:283–289

    Article  CAS  PubMed  Google Scholar 

  • Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888

    Article  CAS  PubMed  Google Scholar 

  • Hu JS, Vogt D, Sandberg M et al (2017) Cortical interneuron development: a tale of time and space. Development (Cambridge, England) 144:3867–3878

    Article  CAS  Google Scholar 

  • Hua T, Kao C, Sun Q et al (2008) Decreased proportion of GABA neurons accompanies age-related degradation of neuronal function in cat striate cortex. Brain Res Bull 75:119–125

    Article  CAS  PubMed  Google Scholar 

  • Hutnick LK, Golshani P, Namihira M et al (2009) DNA hypomethylation restricted to the murine forebrain induces cortical degeneration and impairs postnatal neuronal maturation. Hum Mol Genet 18:2875–2888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ianov L, Rani A, Beas BS et al (2016) Transcription profile of aging and cognition-related genes in the medial prefrontal cortex. Front Aging Neurosci 8:113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ianov L, Riva A, Kumar A et al (2017) DNA methylation of synaptic genes in the prefrontal cortex is associated with aging and age-related cognitive impairment. Front Aging Neurosci 9:249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inan M, Welagen J, Anderson SA (2012) Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence. Cerebral Cortex (New York, NY) 1991(22):820–827

    Google Scholar 

  • Irizarry RA, Ladd-Acosta C, Wen B et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang HS, Shin WJ, Lee JE et al (2017) CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes 8:148

    Article  PubMed Central  CAS  Google Scholar 

  • Jiang CH, Tsien JZ, Schultz PG et al (2001) The effects of aging on gene expression in the hypothalamus and cortex of mice. Proc Natl Acad Sci U S A 98:1930–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin B, Robertson KD (2013) DNA methyltransferases, DNA damage repair, and cancer. Adv Exp Med Biol 754:3–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    Article  CAS  PubMed  Google Scholar 

  • Jucker M, Ingram DK (1997) Murine models of brain aging and age-related neurodegenerative diseases. Behav Brain Res 85:1–26

    Article  CAS  PubMed  Google Scholar 

  • Kadriu B, Guidotti A, Chen Y et al (2012) DNA methyltransferases1 (DNMT1) and 3a (DNMT3a) colocalize with GAD67-positive neurons in the GAD67-GFP mouse brain. J Comp Neurol 520:1951–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keleshian VL, Modi HR, Rapoport SI et al (2013) Aging is associated with altered inflammatory, arachidonic acid cascade, and synaptic markers, influenced by epigenetic modifications, in the human frontal cortex. J Neurochem 125:63–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy AJ, Sweatt JD (2016) Drugging the methylome: DNA methylation and memory. Crit Rev Biochem Mol Biol 51:185–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiecker C, Lumsden A (2005) Compartments and their boundaries in vertebrate brain development. Nat Rev Neurosci 6:553–564

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Jang WY, Kang MC et al (2016) TET1 contributes to neurogenesis onset time during fetal brain development in mice. Biochem Biophys Res Commun 471:437–443

    Article  CAS  PubMed  Google Scholar 

  • Kozlenkov A, Roussos P, Timashpolsky A et al (2014) Differences in DNA methylation between human neuronal and glial cells are concentrated in enhancers and non-CpG sites. Nucleic Acids Res 42:109–127

    Article  CAS  PubMed  Google Scholar 

  • Kozlenkov A, Wang M, Roussos P et al (2016) Substantial DNA methylation differences between two major neuronal subtypes in human brain. Nucleic Acids Res 44:2593–2612

    Article  PubMed  Google Scholar 

  • Kraus TF, Kilinc S, Steinmaurer M et al (2016) Profiling of methylation and demethylation pathways during brain development and ageing. J Neural Transm (Vienna) 123:189–203

    Article  CAS  Google Scholar 

  • Kulis M, Queiros AC, Beekman R et al (2013) Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochim Biophys Acta 1829:1161–1174

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Sanawar R, Li X, Li F (2017) Structure, biochemistry, and biology of PAK kinases. Gene 605:20–31

    Article  CAS  PubMed  Google Scholar 

  • Lande-Diner L, Zhang J, Ben-Porath I et al (2007) Role of DNA methylation in stable gene repression. J Biol Chem 282:12194–12200

    Article  CAS  PubMed  Google Scholar 

  • Lardenoije R, Iatrou A, Kenis G et al (2015) The epigenetics of aging and neurodegeneration. Prog Neurobiol 131:21–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SM, Choi WY, Lee J et al (2015) The regulatory mechanisms of intragenic DNA methylation. Epigenomics 7:527–531

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Park SJ, Nakai K (2017) Differential landscape of non-CpG methylation in embryonic stem cells and neurons caused by DNMT3s. Sci Rep 7:11295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Letzkus JJ, Wolff SB, Luthi A (2015) Disinhibition, a circuit mechanism for associative learning and memory. Neuron 88:264–276

    Article  CAS  PubMed  Google Scholar 

  • Levenson JM, Roth TL, Lubin FD, Miller CA, Huang IC, Desai P, Malone LM, Sweatt JD (2006) Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 281(23):15763–15773

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA (2012) Cortical circuit dysfunction and cognitive deficits in schizophrenia--implications for preemptive interventions. Eur J Neurosci 35:1871–1878

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Prazak L, Chatterjee N et al (2013) Activation of transposable elements during aging and neuronal decline in Drosophila. Nat Neurosci 16:529–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao C, Han Q, Ma Y et al (2016) Age-related gene expression change of GABAergic system in visual cortex of rhesus macaque. Gene 590:227–233

    Article  CAS  PubMed  Google Scholar 

  • Liguz-Lecznar M, Lehner M, Kaliszewska A et al (2015) Altered glutamate/GABA equilibrium in aged mice cortex influences cortical plasticity. Brain Struct Funct 220:1681–1693

    Article  CAS  PubMed  Google Scholar 

  • Lin LC, Sibille E (2013) Reduced brain somatostatin in mood disorders: a common pathophysiological substrate and drug target? Front Pharmacol 4:110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ling LL, Hughes LF, Caspary DM (2005) Age-related loss of the GABA synthetic enzyme glutamic acid decarboxylase in rat primary auditory cortex. Neuroscience 132:1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Lister R, Mukamel EA (2015) Turning over DNA methylation in the mind. Front Neurosci 9:252

    Article  PubMed  PubMed Central  Google Scholar 

  • Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lister R, Mukamel EA, Nery JR et al (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341:1237905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loerch PM, Lu T, Dakin KA et al (2008) Evolution of the aging brain transcriptome and synaptic regulation. PLoS One 3:e3329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mangold CA, Masser DR, Stanford DR et al (2017) CNS-wide sexually dimorphic induction of the major histocompatibility complex 1 pathway with aging. J Gerontol A Biol Sci Med Sci 72:16–29

    Article  CAS  PubMed  Google Scholar 

  • Margueron R, Reinberg D (2011) The polycomb complex PRC2 and its mark in life. Nature 469:343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin O (2012) Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci 13:107–120

    Article  CAS  PubMed  Google Scholar 

  • Martynoga B, Drechsel D, Guillemot F (2012) Molecular control of neurogenesis: a view from the mammalian cerebral cortex. Cold Spring Harb Perspect Biol 4(10)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mastroeni D, Grover A, Delvaux E et al (2010) Epigenetic changes in Alzheimer’s disease: decrements in DNA methylation. Neurobiol Aging 31:2025–2037

    Article  CAS  PubMed  Google Scholar 

  • Matrisciano F, Tueting P, Dalal I et al (2013) Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice. Neuropharmacology 68:184–194

    Article  CAS  PubMed  Google Scholar 

  • McGowan PO, Sasaki A, D’Alessio AC et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12:342–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinney BC, Lin CW, Oh H et al (2015) Hypermethylation of BDNF and SST genes in the orbital frontal cortex of older individuals: a putative mechanism for declining gene expression with age. Neuropsychopharmacology 40:2604–2613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinsey GL, Lindtner S, Trzcinski B et al (2013) Dlx1&2-dependent expression of Zfhx1b (Sip1, Zeb2) regulates the fate switch between cortical and striatal interneurons. Neuron 77:83–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meadows JP, Guzman-Karlsson MC, Phillips S et al (2015) DNA methylation regulates neuronal glutamatergic synaptic scaling. Sci Signal 8(382):ra61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meadows JP, Guzman-Karlsson MC, Phillips S et al (2016) Dynamic DNA methylation regulates neuronal intrinsic membrane excitability. Sci Signal 9:ra83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merot Y, Retaux S, Heng JI (2009) Molecular mechanisms of projection neuron production and maturation in the developing cerebral cortex. Semin Cell Dev Biol 20:726–734

    Article  CAS  PubMed  Google Scholar 

  • Metin C, Baudoin JP, Rakic S et al (2006) Cell and molecular mechanisms involved in the migration of cortical interneurons. Eur J Neurosci 23:894–900

    Article  PubMed  Google Scholar 

  • Mi Y, Gao X, Dai J et al (2015) A novel function of TET2 in CNS: sustaining neuronal survival. Int J Mol Sci 16:21846–21857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miettinen R, Sirvio J, Riekkinen P et al (1993) Neocortical, hippocampal and septal parvalbumin- and somatostatin-containing neurons in young and aged rats: correlation with passive avoidance and water maze performance. Neuroscience 53:367–378

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi G, Hjerling-Leffler J, Karayannis T et al (2010) Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J Neurosci 30:1582–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo A, Mukamel EA, Davis FP et al (2015) Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86:1369–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris HM, Hashimoto T, Lewis DA (2008) Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder. Cereb Cortex 18:1575–1587

    Article  PubMed  Google Scholar 

  • Morris MJ, Na ES, Autry AE et al (2016) Impact of DNMT1 and DNMT3a forebrain knockout on depressive- and anxiety like behavior in mice. Neurobiol Learn Mem 135:139–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyer JR Jr, Furtak SC, McGann JP et al (2011) Aging-related changes in calcium-binding proteins in rat perirhinal cortex. Neurobiol Aging 32:1693–1706

    Article  CAS  PubMed  Google Scholar 

  • Murthy S, Niquille M, Hurni N et al (2014) Serotonin receptor 3A controls interneuron migration into the neocortex. Nat Commun 5:5524

    Article  CAS  PubMed  Google Scholar 

  • Na KS, Won E, Kang J et al (2016) Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder. Sci Rep 6:21089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nardone S, Sams DS, Zito A et al (2017) Dysregulation of cortical neuron DNA methylation profile in autism spectrum disorder. Cereb Cortex 27:5739–5754

    Article  PubMed  PubMed Central  Google Scholar 

  • Ning X, Shi Z, Liu X et al (2015) DNMT1 and EZH2 mediated methylation silences the microRNA-200b/a/429 gene and promotes tumor progression. Cancer Lett 359:198–205

    Article  CAS  PubMed  Google Scholar 

  • Nobrega-Pereira S, Kessaris N, Du T et al (2008) Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors. Neuron 59:733–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi H, Kimura A, Murao N et al (2015) Expression of DNMT1 in neural stem/precursor cells is critical for survival of newly generated neurons in the adult hippocampus. Neurosci Res 95:1–11

    Article  CAS  PubMed  Google Scholar 

  • Noguchi H, Kimura A, Murao N et al (2016a) Prenatal deletion of DNA methyltransferase 1 in neural stem cells impairs neurogenesis and causes anxiety-like behavior in adulthood. Neurogenesis (Austin) 3:e1232679

    Article  CAS  Google Scholar 

  • Noguchi H, Murao N, Kimura A et al (2016b) DNA methyltransferase 1 is indispensable for development of the hippocampal dentate gyrus. J Neurosci 36:6050–6068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonaka-Kinoshita M, Reillo I, Artegiani B et al (2013) Regulation of cerebral cortex size and folding by expansion of basal progenitors. EMBO J 32:1817–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Numata S, Ye T, Hyde TM et al (2012) DNA methylation signatures in development and aging of the human prefrontal cortex. Am J Hum Genet 90:260–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberlander TF, Weinberg J, Papsdorf M et al (2008) Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 3:97–106

    Article  PubMed  Google Scholar 

  • Ouda L, Druga R, Syka J (2008) Changes in parvalbumin immunoreactivity with aging in the central auditory system of the rat. Exp Gerontol 43:782–789

    Article  CAS  PubMed  Google Scholar 

  • Ouda L, Burianova J, Syka J (2012) Age-related changes in calbindin and calretinin immunoreactivity in the central auditory system of the rat. Exp Gerontol 47:497–506

    Article  CAS  PubMed  Google Scholar 

  • Ouellet L, de Villers-Sidani E (2014) Trajectory of the main GABAergic interneuron populations from early development to old age in the rat primary auditory cortex. Front Neuroanat 8:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Penner MR, Parrish RR, Hoang LT et al (2016) Age-related changes in Egr1 transcription and DNA methylation within the hippocampus. Hippocampus 26:1008–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pensold D, Symmank J, Hahn A et al (2017) The DNA methyltransferase 1 (DNMT1) controls the shape and dynamics of migrating POA-derived interneurons fated for the murine cerebral cortex. Cereb Cortex 27:5696–5714

    Article  PubMed  Google Scholar 

  • Pfisterer U, Khodosevich K (2017) Neuronal survival in the brain: neuron type-specific mechanisms. Cell Death Dis 8:e2643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinney SE (2014) Mammalian non-CpG methylation: stem cells and beyond. Biology 3:739–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pishva E, Rutten BPF, van den Hove D (2017) DNA methylation in major depressive disorder. Adv Exp Med Biol 978:185–196

    Article  CAS  PubMed  Google Scholar 

  • Potier B, Jouvenceau A, Epelbaum J et al (2006) Age-related alterations of GABAergic input to CA1 pyramidal neurons and its control by nicotinic acetylcholine receptors in rat hippocampus. Neuroscience 142:187–201

    Article  CAS  PubMed  Google Scholar 

  • Pouille F, Watkinson O, Scanziani M et al (2013) The contribution of synaptic location to inhibitory gain control in pyramidal cells. Phys Rep 1:e00067

    Google Scholar 

  • Purkait S, Sharma V, Kumar A et al (2016) Expression of DNA methyltransferases 1 and 3B correlates with EZH2 and this 3-marker epigenetic signature predicts outcome in glioblastomas. Exp Mol Pathol 100:312–320

    Article  CAS  PubMed  Google Scholar 

  • Ramesh V, Bayam E, Cernilogar FM et al (2016) Loss of Uhrf1 in neural stem cells leads to activation of retroviral elements and delayed neurodegeneration. Genes Dev 30:2199–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhee KD, Yu J, Zhao CY et al (2012) Dnmt1-dependent DNA methylation is essential for photoreceptor terminal differentiation and retinal neuron survival. Cell Death Dis 3:e427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roth TL, Zoladz PR, Sweatt JD et al (2011) Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder. J Psychiatr Res 45:919–926

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozycka A, Liguz-Lecznar M (2017) The space where aging acts: focus on the GABAergic synapse. Aging Cell 16:634–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubin AN, Kessaris N (2013) PROX1: a lineage tracer for cortical interneurons originating in the lateral/caudal ganglionic eminence and preoptic area. PLoS One 8:e77339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruzicka WB, Zhubi A, Veldic M et al (2007) Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection. Mol Psychiatry 12:385–397

    Article  CAS  PubMed  Google Scholar 

  • Sandberg M, Flandin P, Silberberg S et al (2016) Transcriptional networks controlled by NKX2-1 in the development of forebrain GABAergic neurons. Neuron 91:1260–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma RP, Tun N, Grayson DR (2008) Depolarization induces downregulation of DNMT1 and DNMT3a in primary cortical cultures. Epigenetics 3:74–80

    Article  PubMed  Google Scholar 

  • Sharma A, Klein SS, Barboza L et al (2016) Principles governing DNA methylation during neuronal lineage and subtype specification. J Neurosci 36:1711–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shetty AK, Turner DA (1998) Hippocampal interneurons expressing glutamic acid decarboxylase and calcium-binding proteins decrease with aging in Fischer 344 rats. J Comp Neurol 394:252–269

    Article  CAS  PubMed  Google Scholar 

  • Siegmund KD, Connor CM, Campan M et al (2007) DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2:e895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smallwood A, Esteve PO, Pradhan S et al (2007) Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev 21:1169–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • So AY, Jung JW, Lee S et al (2011) DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS One 6:e19503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Southwell DG, Paredes MF, Galvao RP et al (2012) Intrinsically determined cell death of developing cortical interneurons. Nature 491:109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley DP, Shetty AK (2004) Aging in the rat hippocampus is associated with widespread reductions in the number of glutamate decarboxylase-67 positive interneurons but not interneuron degeneration. J Neurochem 89:204–216

    Article  CAS  PubMed  Google Scholar 

  • Stanley EM, Fadel JR, Mott DD (2012) Interneuron loss reduces dendritic inhibition and GABA release in hippocampus of aged rats. Neurobiol Aging 33:431 e431–431 e413

    Article  CAS  Google Scholar 

  • Sundman-Eriksson I, Allard P (2006) Age-correlated decline in [3H]tiagabine binding to GAT-1 in human frontal cortex. Aging Clin Exp Res 18:257–260

    Article  CAS  PubMed  Google Scholar 

  • Sweatt JD (2016) Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling. J Neurochem 137:312–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symmank J, Zimmer G (2017) Regulation of neuronal survival by DNA methyltransferases. Neural Regen Res 12(11):1768–1775

    Article  PubMed  PubMed Central  Google Scholar 

  • Symmank J, Bayer C, Schmidt C et al (2018) DNMT1 modulates interneuron morphology by regulating Pak6 expression through crosstalk with histone modifications. Epigenetics 13:536–556

    Article  PubMed  PubMed Central  Google Scholar 

  • Symmank J, Gölling V, Gerstmann K, Zimmer G (2019) The transcription factor LHX1 regulates the survival and directed migration of POA-derived cortical interneurons. Cereb Cortex 29(4):1644–1658

    Article  PubMed  Google Scholar 

  • van den Berghe V, Stappers E, Vandesande B et al (2013) Directed migration of cortical interneurons depends on the cell-autonomous action of Sip1. Neuron 77:70–82

    Article  PubMed  CAS  Google Scholar 

  • Veldic M, Caruncho HJ, Liu WS et al (2004) DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc Natl Acad Sci U S A 101:348–353

    Article  CAS  PubMed  Google Scholar 

  • Veldic M, Guidotti A, Maloku E et al (2005) In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci U S A 102:2152–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinson C, Chatterjee R (2012) CG methylation. Epigenomics 4:655–663

    Article  CAS  PubMed  Google Scholar 

  • Vire E, Brenner C, Deplus R et al (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18:517–534

    Article  CAS  PubMed  Google Scholar 

  • Xin YJ, Yuan B, Yu B et al (2015) Tet1-mediated DNA demethylation regulates neuronal cell death induced by oxidative stress. Sci Rep 5:7645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, de la Cruz E, Anderson SA (2003) Cortical interneuron fate determination: diverse sources for distinct subtypes? Cereb Cortex 13:670–676

    Article  PubMed  Google Scholar 

  • Yang J, Ji WY, Qu YR et al (2011) DNA methylation and histone modification relate to RASSF1A gene deletion in laryngeal carcinoma tissues. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 46:308–312

    PubMed  Google Scholar 

  • Zhu H, Wang G, Qian J (2016) Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet 17:551–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer-Bensch G (2018) Diverse facets of cortical interneuron migration regulation – implications of neuronal activity and epigenetics. Brain Res 1700:160–169

    Article  CAS  PubMed  Google Scholar 

  • Zovkic IB, Guzman-Karlsson MC, Sweatt JD (2013) Epigenetic regulation of memory formation and maintenance. Learn Mem 20:61–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by the DFG ZI 1224/4-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldine Zimmer-Bensch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zimmer-Bensch, G. (2019). Functional Implications of Dynamic DNA Methylation for the Developing, Aging and Diseased Brain. In: Jurga, S., Barciszewski, J. (eds) The DNA, RNA, and Histone Methylomes. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-14792-1_6

Download citation

Publish with us

Policies and ethics