Skip to main content

Current Advancements in Recombinant Technology for Industrial Cellulases: Part-I

  • Chapter
  • First Online:
Approaches to Enhance Industrial Production of Fungal Cellulases

Part of the book series: Fungal Biology ((FUNGBIO))

  • 419 Accesses

Abstract

Cellulases are one of the widely used enzymes in different industries such as pharma, paper, detergent, agriculture, and food. These are gaining significant interest nowadays owing to their ability to convert the cellulosic biomass in to valuable products including second-generation biofuels and other bioprocess-based products. There has been a significant advancement in the commercial production of cellulase enzyme by using recombinant DNA technology. Recombinant DNA technology facilitates the conversion of noncellulolytic-producing microbes to enzyme-producing one by transferring the desired genes from known microbes. The gene responsible for cellulase production can be extracted from the cellulolytic microbes and can be inserted and expressed in target bacterium using a suitable vector. The gene of interest can be transferred by direct or indirect gene transfer method in the fast replicating microbe. Fungi and molds are predominant sources of cellulase enzyme, but their production and recovery cost is higher which makes them unsuitable for commercial production. The potential recombinant microbe producing cellulase can enhance the overall product yield by showing enormous growth potential and production on inexpensive substrate such as agro-industrial waste in lesser time making the process economical. This chapter deals with the new advancement in cellulase production by recombinant strains. The chapter comprises the information regarding different gene construct expressing cellulase enzyme, their fermentative production, recovery, and potential applications at industrial level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulla HM, El-Shatoury SA (2007) Actinomycetes in rice straw decomposition. Waste Manag 27(6):850–853

    Article  CAS  PubMed  Google Scholar 

  • Ali N, Athar MA, Khan YH, Idrees M, Ahmad D (2014) Regulation and improvement of cellulase production: recent advances. Nat Resour 5:857–863

    Google Scholar 

  • Bamforth CW (2009) Current perspectives on the role of enzymes in brewing. J Cereal Sci 50(3):353–357

    Article  CAS  Google Scholar 

  • Beckham GT, Bomble YJ, Matthews JF, Taylor CB, Resch MG, Yarbrough JM, Decker SR, Bu L, Zhao X, McCabe C, Wohlert J, Bergenstrahle M, Brady JW, Adney WS, Himmel ME, Crowley MF (2010) The O-Glycosylated linker from the Trichoderma reesei family 7 cellulase is a flexible, disordered protein. Biophys J 99:3773–3781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13(1):25–58

    Article  PubMed  Google Scholar 

  • Behera BC, Sethi BK, Mishra RR, Dutta SK, Thatoi HN (2017) Microbial cellulases–Diversity & biotechnology with reference to mangrove environment: a review. J Genet Eng Biotechnol 15(1):197–210

    Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18(5):355–383

    Article  CAS  PubMed  Google Scholar 

  • Bowen RM, Harper SHT (1990) Decomposition of wheat straw and related compounds by fungi isolated from straw in arable soils. Soil Biol Biochem 22(3):393–399

    Article  Google Scholar 

  • Buchert J, Oksanen T, Pere J, Siika-Aho M, Suurnäkki A, Viikari L (1998) Applications of Trichoderma reesei enzymes in the pulp and paper industry. Trichoderma Gliocladium 2:343–363

    Google Scholar 

  • Çinar I (2005) Effects of cellulase and pectinase concentrations on the colour yield of enzyme extracted plant carotenoids. Process Biochem 40(2):945–949

    Article  CAS  Google Scholar 

  • Cowan WD (1996) Animal feed,[w:]. In: Godfrey T, West S (eds) Industrial enzymology, 2nd edn. Macmillan Press, London, UK, pp 360–371

    Google Scholar 

  • De Carvalho LMJ, De Castro IM, Da Silva CAB (2008) A study of retention of sugars in the process of clarification of pineapple juice (Ananas comosus, L. Merril) by micro-and ultra-filtration. J Food Eng 87(4):447–454

    Article  CAS  Google Scholar 

  • De Faveri D, Aliakbarian B, Avogadro M, Perego P, Converti A (2008) Improvement of olive oil phenolics content by means of enzyme formulations: effect of different enzyme activities and levels. Biochem Eng J 41(2):149–156

    Article  CAS  Google Scholar 

  • Dhiman TR, Zaman MS, Gimenez RR, Walters JL, Treacher R (2002) Performance of dairy cows fed forage treated with fibrolytic enzymes prior to feeding. Anim Feed Sci Technol 101(1–4):115–125

    Article  CAS  Google Scholar 

  • Dourado F, Bastos M, Mota M, Gama FM (2002) Studies on the properties of Celluclast/Eudragit L-100 conjugate. J Biotechnol 99(2):121–131

    Article  CAS  PubMed  Google Scholar 

  • Escobar MO, Hue NV (2008) Temporal changes of selected chemical properties in three manure–amended soils of Hawaii. Bioresour Technol 99(18):8649–8654

    Article  CAS  Google Scholar 

  • Ferbiyanto A, Rusmana I, Raffiudin R (2015) Characterization and identification of cellulolytic bacteria from gut of worker Macrotermes gilvus. HAYATI J Biosci 22:197–200

    Article  Google Scholar 

  • Galante YM, De Conti A, Monteverdi R (1998a) Application of Trichoderma enzymes in food and feed industries. In: Harman GF, Kubicek CP (eds) Trichoderma and gliocladium—enzymes, vol. 2 of biological control and commercial applications. Taylor & Francis, London, pp 311–326

    Google Scholar 

  • Galante YM, De Conti RA, Harman GF, Kubicek CP (eds) (1998b) Trichoderma & gliocladium—enzymes, biological control and commercial applications. Taylor & Francis, London, pp 327–342

    Google Scholar 

  • Godfrey T, Godfrey T, West S (1996) Industrial enzymology, 2nd edn. Macmillan Press, London, pp 360–371

    Google Scholar 

  • Gupta R, Sharma KK, Kuhad RC (2009) Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour Technol 100(3):1214–1220

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Khasa YP, Kuhad RC (2011a) Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydr Polym 84(3):1103–1109

    Article  CAS  Google Scholar 

  • Gupta R, Mehta G, Khasa YP, Kuhad RC (2011b) Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation 22(4):797–804

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Mehta G, Deswal D, Sharma S, Jain KK, Kuhad RC, Singh A (2013) Cellulases and their biotechnological applications. In: Biotechnology for environmental management and resource recovery. Springer, India, pp 89–106. https://doi.org/10.1007/978-81-322-0876-1_6

    Chapter  Google Scholar 

  • Harman GE, Kubicek CP (1998) Trichoderma and gliocladium: enzymes, vol. 2 of biological control and commercial applications. Taylor & Francis, London

    Google Scholar 

  • Hebeish A, Ibrahim NA (2007) The impact of frontier sciences on textile industry. Colourage 54(4):41–55

    Google Scholar 

  • Hsu JC, Lakhani NN (2002) U.S. Patent No. 6,413,363. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Hu Y, Du C, Pensupa N, Lin CSK (2018) Optimisation of fungal cellulase production from textile waste using experimental design. Process Saf Environ Prot. https://doi.org/10.1016/j.psep.2018.06.009

    Article  CAS  Google Scholar 

  • Ibrahim ASS, El-diwany AI (2007) Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Aust J Basic Appl Sci 1(4):473–478

    CAS  Google Scholar 

  • Ibrahim NA, El-Badry K, Eid BM, Hassan TM (2011) A new approach for biofinishing of cellulose-containing fabrics using acid cellulases. Carbohydr Polym 83(1):116–121

    Article  CAS  Google Scholar 

  • Idris ASO, Pandey A, Rao SS, Sukumaran RK (2017) Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum Stover. Bioresour Technol 242:265–271

    Article  CAS  PubMed  Google Scholar 

  • Karmakar M, Ray RR (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6(1):41

    Article  CAS  Google Scholar 

  • Kibblewhite RP, Bawden AD, Brindley CL (1995) TMP fibre and fines qualities of thirteen radiata pine wood types. Appita J 48(5):367–377

    Google Scholar 

  • Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351

    Article  CAS  PubMed  Google Scholar 

  • Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B (2009) Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels 2(1):19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuhad RC, Gupta R, Khasa YP (2010a) Bioethanol production from lignocellulosic biomass: an overview. Teri Press, New Delhi

    Google Scholar 

  • Kuhad RC, Gupta R, Khasa YP, Singh A (2010b) Bioethanol production from Lantana camara (red sage): pretreatment, saccharification and fermentation. Bioresour Technol 101(21):8348–8354

    Article  CAS  PubMed  Google Scholar 

  • Kuhad RC, Mehta G, Gupta R, Sharma KK (2010c) Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenergy 34(8):1189–1194

    Article  CAS  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:10. https://doi.org/10.4061/2011/280696. (Article ID 280696)

    Article  CAS  Google Scholar 

  • Lah TNT, Rahman NNN, Nama MB (2012) Cellulase activity and glucose production by Bacillus cereus monoculture and co-culture utilizing palm kernel cake (PKC) under solid state fermentation. In International conference on environment, energy and biotechnology, Singapore (Vol. 33, pp. 172–177)

    Google Scholar 

  • Le Crom S, Schackwitz W, Pennacchio L, Magnuson JK, Culley DE, Collett JR et al (2009) Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc Natl Acad Sci 106(38):16151–16156

    Article  PubMed  PubMed Central  Google Scholar 

  • Li YH, Ding M, Wang J, Xu GJ, Zhao F (2006) A novel thermo acidophilic endoglucanase, Ba-EGA, from a new cellulose-degrading bacterium, Bacillus sp. AC-1. Appl Microbiol Biotechnol 70(4):430–436

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Feng Z, Yesuf J, Blackburn JW (2010) Optimization of growth medium and enzyme assay conditions for crude cellulases produced by a novel thermophilic and cellulolytic bacterium, Anoxybacillus sp. 527. Appl Biochem Biotechnol 160(6):1841–1852

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL, Li HN, Song HT, Xiao WJ, Xia WC, Liu XP, Jiang ZB (2018) Construction of a tri functional cellulase and expression in Saccharomyces cerevisiae using a fusion protein. BMC Biotechnol 18(43):01–07

    Google Scholar 

  • Marques NP, de Cassia Pereira J, Gomes E, da Silva R, Araújo AR, Ferreira H et al (2018) Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Ind Crop Prod 122:66–75

    Article  CAS  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE et al (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560

    Google Scholar 

  • Milala MA, Shugaba A, Gidado A, Ene AC, Wafar JA (2005) Studies on the use of agricultural wastes for cellulase enzyme production by Aspergillus niger. Res J Agric Biol Sci 1(4):325–328

    Google Scholar 

  • Mishra BK, Lata AP (2007) Lignocellulolytic enzyme production from submerged fermentation of paddy straw. Indian J Microbiol 47(2):176–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  CAS  PubMed  Google Scholar 

  • Nair AS, Al-Battashi H, Al-Akzawi A, Annamalai N, Gujarathi A, Al-Bahry S et al (2018) Waste office paper: A potential feedstock for cellulase production by a novel strain Bacillus velezensis ASN1. Waste Manag 79:491–500

    Article  CAS  PubMed  Google Scholar 

  • Nataf Y, Bahari L, Raifer HL, Borovok I, Lamed R, Bayer EA, Sonenshein AL, Shoham Y (2010) Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors. PNAS 43(107):18646–18651

    Article  Google Scholar 

  • Nizamudeen S, Bajaj BK (2009) A novel thermo-alkali tolerant endoglucanase production using cost-effective agricultural residues as substrates by a newly isolated Bacillus sp. NZ. Food Technol Biotechnol 47(4):435–440

    CAS  Google Scholar 

  • Oksanen J, Ahvenainen J, Home S (1985) Microbial cellulose for improving filterability of wort and beer. In Proceedings of the 20th European brewery chemistry congress, Helsinki, Finland, pp. 419–425

    Google Scholar 

  • Pandey A (2003) Solid-state fermentation. Biochem Eng J 13(2-3):81–84

    Article  CAS  Google Scholar 

  • Patel MA, Ou MS, Ingram LO, Shanmugam KT (2005) Simultaneous saccharification and co fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Biotechnol Prog 21(5):1453–1460

    Article  CAS  PubMed  Google Scholar 

  • Qadir F, Shariq M, Ahmed A, Sohail M (2018) Evaluation of a yeast co-culture for cellulase and xylanase production under solid state fermentation of sugarcane bagasse using multivariate approach. Ind Crop Prod 123:407–415

    Article  CAS  Google Scholar 

  • Rai P, Majumdar GC, Gupta SD, De S (2007) Effect of various pretreatment methods on permeate flux and quality during ultrafiltration of mosambi juice. J Food Eng 78(2):561–568

    Article  CAS  Google Scholar 

  • Reddy KV, Vijayalashmi T, Pabbati R, Maddela NR (2017) Characterization of some efficient cellulase producing bacteria isolated from pulp and paper mill effluent contaminated soil. Braz Arch Biol Technol 60:1–6

    CAS  Google Scholar 

  • Shajahan S, Moorthy IG, Sivakumar N, Selvakumar G (2017) Statistical modeling and optimization of cellulase production by Bacillus licheniformis NCIM 5556 isolated from the hot spring, Maharashtra, India. J King Saud Univ Sci 29(3):302–310

    Article  Google Scholar 

  • Sharyo M, Sakaguchi H, Ohishi M, Takahashi M, Kida K, Tamagawa H, et al (2002) U.S. Patent No. 6,468,391. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Shrivastava B, Thakur S, Khasa YP, Gupte A, Puniya AK, Kuhad RC (2011) White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation 22(4):823–831

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Kuhad RC, Ward OP (2007) Industrial application of microbial cellulases. In: Lignocellulose biotechnoloy: future prospects. Anshan, Tunbridge Wells, pp 345–358

    Google Scholar 

  • Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol 46:541–549

    Article  CAS  Google Scholar 

  • Sreena CP, Sebastian D (2018) Augmented cellulase production by Bacillus subtilis strain MU S1 using different statistical experimental designs. J Genet Eng Biotechnol 16(1):9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sticklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol 17:315–319

    Article  CAS  PubMed  Google Scholar 

  • Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases-production, applications and challenges. J Sci Ind Res 64(11):832–844

    CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Svensson B, Frandsen TP, Matsui I, Juge N, Fierobe HP, Stoffer B, Rodenburg KW (1995) Mutational analysis of catalytic mechanism and specificity in amylolytic enzymes. In: Petersen SB, Svensson B, Pedersen S (eds) Carbohydrate bioengineering. Elsevier, Amsterdam

    Google Scholar 

  • Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100(6):637–643

    Article  CAS  PubMed  Google Scholar 

  • Tejada M, Gonzalez JL, García-Martínez AM, Parrado J (2008) Application of a green manure and green manure composted with beet vinasse on soil restoration: effects on soil properties. Bioresour Technol 99(11):4949–4957

    Article  CAS  PubMed  Google Scholar 

  • Templeton DW, Sluiter AD, Hayward TK, Hames BR, Thomas SR (2009) Assessing corn stover composition and sources of variability via NIRS. Cellulose 16:621–639

    Article  CAS  Google Scholar 

  • Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86(1):88–98

    Article  CAS  PubMed  Google Scholar 

  • Zhang XZ, Zhang YHP (2013) Cellulases: characteristics, sources, production, and applications. In: Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers, vol 1. John Wiley & Sons, Inc., Hoboken, pp 131–146

    Chapter  Google Scholar 

  • Zhang X, Li Y, Zhao X, Bai F (2017) Constitutive cellulase production from glucose using the recombinant Trichoderma reesei strain overexpressing an artificial transcription activator. Bioresour Technol 223:317–322

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Zhao X, Bai F (2018) Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. Bioresour Technol 247:676–683

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Deng L, Fang H (2018) Mixed culture of recombinant Trichoderma reesei and Aspergillus niger for cellulase production to increase the cellulose degrading capability. Biomass Bioenergy 112:93–98

    Article  CAS  Google Scholar 

  • Zhonghai L, Guangshan Y, Ruimei W, Liwei G, Qinbiao K, Meng L, Piao Y, Guodong L, Yuqi Q, Xin S, Yaohua Z, Xu F, Yinbo Q (2015) Synergistic and dose-controlled regulation of cellulase gene expression in Penicillium oxalicum. PLoS Genet 11(9):e1005509

    Article  CAS  Google Scholar 

  • Zhuang J, Marchant MA, Nokes SE, Strobel HJ (2007) Economic analysis of cellulase production methods for bio-ethanol. Appl Eng Agric 23(5):679–687

    Article  Google Scholar 

  • Zou G, Shi S, Jiang Y, Brink JVD, Vries RPD, Chen L, Zhang J, Ma L, Wang C, Zhou Z (2012) Construction of a cellulase hyper-expression system in Trichoderma reesei by promoter and enzyme engineering. Microb Cell Factories 11(21):01–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathi, A.D., Srivastava, S.K., Maurya, K.K., Mishra, S., Shaw, D. (2019). Current Advancements in Recombinant Technology for Industrial Cellulases: Part-I. In: Srivastava, M., Srivastava, N., Ramteke, P., Mishra, P. (eds) Approaches to Enhance Industrial Production of Fungal Cellulases . Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-14726-6_10

Download citation

Publish with us

Policies and ethics